Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 117: 103671, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37677867

ABSTRACT

Stingless bees (Meliponini) are important pollinators throughout the world's tropical and subtropical regions. Understanding their thermal tolerance is key to predicting their resilience to changing climates and increasingly frequent extreme heat events. We examined critical thermal maxima (CTmax), survival during 1-8 h heat periods, chill coma recovery and thermal preference for Australian meliponine species that occupy different climates across their ranges: Tetragonula carbonaria (tropical to temperate regions), T. hockingsi (tropical and subtropical regions only) and Austroplebeia australis (widely distributed including arid regions). We found interspecific differences in thermal tolerance consistent with differences in the climate variability observed in each species' range. Foragers of A. australis had a faster chill coma recovery (288 s) than foragers of T. hockingsi (1059 s) and T. carbonaria (872 s). Austroplebeia australis also had the highest CTmax of 44.5 °C, while the CTmax of the two Tetragonula species was ∼43.1 °C. After a 1-h heat exposure, T. carbonaria foragers experienced 95% mortality at 42 °C, and 100% at 45 °C. Surprisingly, larvae and pupae of both Tetragonula species were more resistant to heat exposure than foragers. Within an enclosed temperature gradient apparatus (17-38 °C), no clear preference was found for foragers; however, they were most frequently observed at ∼18 °C. Results indicate that in some regions of Australia, meliponines already experience periodic heat events exceeding their thermal maxima. Employing effective management strategies (such as nest site insulation and habitat preservation) may be crucial to colony survival under continued climate change.

2.
Heredity (Edinb) ; 128(3): 169-177, 2022 03.
Article in English | MEDLINE | ID: mdl-35115648

ABSTRACT

Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.


Subject(s)
Thysanoptera , Wolbachia , Animals , Bacteroidetes , Female , Male , Sex Ratio , Symbiosis/genetics , Temperature , Thysanoptera/genetics , Thysanoptera/microbiology , Wolbachia/genetics
3.
Evolution ; 71(4): 995-1008, 2017 04.
Article in English | MEDLINE | ID: mdl-28181227

ABSTRACT

Cardinium and Wolbachia are common maternally inherited reproductive parasites that can coinfect arthropods, yet interactions between both bacterial endosymbionts are rarely studied. For the first time, we report their independent expression of complete cytoplasmic incompatibility (CI) in a coinfected host, and CI in a species of the haplodiploid insect order Thysanoptera. In Pezothrips kellyanus, Cardinium-induced CI resulted in a combination of male development (MD) and embryonic female mortality (FM) of fertilized eggs. In contrast, Wolbachia-induced CI resulted in FM together with postembryonic mortality not previously reported as a CI outcome. Both endosymbionts appeared to not influence fecundity but virgins produced more offspring than mated females. In coinfected individuals, Wolbachia density was higher than Cardinium. Wolbachia removal did not impact Cardinium density, suggesting a lack of competition within hosts. Maternal transmission was complete for Wolbachia and high for Cardinium. Our data support theoretical predictions and empirical detection of high endosymbiont prevalence in field populations of the native range of this pest thrips. However, previous findings of more frequent loss of Wolbachia than Cardinium, particularly in field populations of the host's invasive range, suggest that genetic diversity or varying environmental factors between field populations also play a role in shaping host-endosymbiont dynamics.


Subject(s)
Bacteroidetes/physiology , Symbiosis , Thysanoptera/microbiology , Wolbachia/physiology , Animals , Reproduction
4.
BMC Evol Biol ; 15: 23, 2015 Feb 22.
Article in English | MEDLINE | ID: mdl-25880387

ABSTRACT

BACKGROUND: Thelytoky, the parthenogenetic development of females, has independently evolved in several insect orders yet the study of its mechanisms has so far mostly focussed on haplodiploid Hymenoptera, while alternative mechanisms of thelytoky such as polyploidy are far less understood. In haplodiploid insects, thelytoky can be encoded in their genomes, or induced by maternally inherited bacteria such as Wolbachia or Cardinium. Microbially facilitated thelytoky usually results in complete homozygosity due to gamete duplication and can be reverted into arrhenotoky, the parthenogenetic development of males, through treatment with antibiotics. In contrast, genetically encoded thelytoky cannot be removed and may result in conservation of heterozygosity due to gamete fusion. We have probed the obligate thelytoky of the greenhouse thrips, Heliothrips haemorrhoidalis (Bouché), a significant cosmopolitan pest and a model species of thelytoky in the haplodiploid insect order Thysanoptera. Earlier studies suggested terminal fusion as a mechanism for thelytoky in this species, while another study reported presence of Wolbachia; later it was speculated that Wolbachia plays a role in this thrips' thelytokous reproduction. RESULTS: By using PCR and sequence analysis, we demonstrated that global population samples of H. haemorrhoidalis were not infected with Wolbachia, Cardinium or any other known bacterial reproductive manipulators. Antibiotic treatment of this thrips did also not result in male production. Some individuals carried two different alleles in two nuclear loci, histone 3 and elongation factor 1 alpha, suggesting heterozygosity. However, the majority of individuals had three different alleles suggesting that they were polyploid. Genetic diversity across both nuclear loci was low in all populations, and absent from mitochondrial cytochrome oxidase I, indicating that this species had experienced genetic bottlenecks, perhaps due to its invasion biology or a switch to thelytoky. CONCLUSIONS: Geographically broad sampling and experimental manipulation revealed low genetic diversity, absence of Wolbachia but presence of three different alleles of nuclear loci in most analysed individuals of obligately thelytokous H. haemorrhoidalis. This suggests that polyploidy may be involved in the thelytokous reproduction of this thrips species, and polyploidy may be a contributing factor in the reproduction of Thysanoptera and other haplodiploid insect orders.


Subject(s)
Parthenogenesis , Polyploidy , Thysanoptera/genetics , Thysanoptera/microbiology , Wolbachia/isolation & purification , Animals , Cell Nucleus/genetics , Female , Genetic Variation , Male , Mitochondria/genetics , Phylogeny , Polymerase Chain Reaction , Symbiosis , Thysanoptera/classification , Thysanoptera/physiology , Wolbachia/genetics
5.
Insect Sci ; 22(3): 360-74, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24619863

ABSTRACT

The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host-affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host-use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well-resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α-Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect-specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host-specific biotypes of the scale.


Subject(s)
Cactaceae/parasitology , Hemiptera/genetics , Hemiptera/microbiology , Animals , Biological Control Agents , Cactaceae/classification , DNA, Bacterial/genetics , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Genetic Variation , Host-Parasite Interactions , Phylogeny , Wolbachia/genetics
6.
Phytochemistry ; 66(24): 2844-50, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16289257

ABSTRACT

Three clerodane diterpenes were isolated and identified from leaf extract of Glossocarya calcicola. Compound has been characterised as (rel)-10betaH-trans-12xi-(2-methylbut-2(E)-enoyl)-1beta-(isobutanoyl)-6alpha,13xi-dihydroxyclerodan-4(20),8(18)-dien-7,15-dione-15,16-oxide, to which we have assigned the trivial name calcicolin-A. The other two compounds had the same skeletal structure and C-12 substituent but in compound, the C-1 esterifying group becomes 2-methylbut-2(E)-enoic acid and in it becomes 2-methylbutanoic acid. Although anti-insect activity was not observed for G. calcicola, cytotoxicity against insect and human carcinoma cell lines was detected.


Subject(s)
Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/pharmacology , Lamiaceae/chemistry , Animals , Diterpenes, Clerodane/isolation & purification , Drug Evaluation, Preclinical/methods , Drug Screening Assays, Antitumor , Humans , Insecticides/pharmacology , Mammals , Molecular Structure , Plant Extracts/pharmacology , Tumor Cells, Cultured
7.
J Econ Entomol ; 98(4): 1259-66, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16156579

ABSTRACT

Crude foliar extracts of 67 species from six subfamilies of Australian Lamiaceae were screened by whole organism contact toxicity on the polyphagous mite Tetranychus urticae Koch (Acari: Tetranychidae) by using a Potter precision spray tower. Cytotoxicity assessments against insect cell lines from Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and Drosophila melanogaster (Meigen) (Diptera: Drosophilidae) also were made. The Spodoptera cell line was more susceptible to extracts than the Drosophila cellline. No direct correlation was observed between the two screening methods, but several interesting relationships were identified. Extracts from subfamilies Ajugoideae, Scutellarioideae, Chloanthoideae, Viticoideae and Nepetoideae showed acaricidal activity, whereas only those from Ajugoideae and Nepetoideae displayed potent cytotoxic effects. A range of activities was observed for the 25 species of Plectranthus, 14 of which showed moderate-to-high contact toxicity against T. urticae. Overall, the lowest toxicity was observed for extracts from the plant subfamily Prostantheroideae, which showed little contact toxicity or cytotoxicity for the 18 extracts studied.


Subject(s)
Insecticides , Lamiaceae/chemistry , Tetranychidae , Animals , Australia , Cell Line , Cell Proliferation/drug effects , Drosophila melanogaster/cytology , Insecticides/pharmacology , Lethal Dose 50 , Plant Extracts/pharmacology , Spodoptera/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...