Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Clin Pharmacol ; 79(8): 1117-1129, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37340142

ABSTRACT

PURPOSE: To estimate whether epilepsy patients with variant UGT2B7 -161C > T (rs7668258) or UGT1A4*3 c.142 T > G (rs2011425) alleles differ from their wild-type (wt) peers in exposure to lamotrigine. METHODS: Consecutive adults on lamotrigine monotherapy or lamotrigine + valproate co-treatment undergoing routine therapeutic drug monitoring, otherwise generally healthy and free of interacting drugs, were genotyped for UGT2B7 -161C > T and UGT1A4*3 c.142 T > G. Heterozygous, variant homozygous, or combined heterozygous/variant homozygous subjects were compared to their wt controls for dose-adjusted lamotrigine troughs with adjustment for age, sex, body weight, rs7668258/rs2011425, polymorphisms of efflux transporter proteins ABCG2 c.421C > A (rs2231142) and ABCB1 1236C > T (rs1128503), and level of exposure to valproate using covariate entropy balancing. RESULTS: Of the 471 included patients, 328 (69.6%) were on monotherapy and 143 were co-treated with valproate. Dose-adjusted lamotrigine troughs in UGT2B7 -161C > T heterozygous (CT, n = 237) or variant homozygous (TT, n = 115) subjects were closely similar to those in their wt controls (CC, n = 119): geometric means ratios (GMRs) (frequentist and Bayes) 1.00 (95%CI 0.86-1.16) and 1.00 (95%CrI 0.83-1.22) for CT vs. CC; and 0.97 (0.81-1.17) and 0.97 (0.80-1.20) for TT vs. CC subjects. Lamotrigine troughs were also closely similar in UGT1A4*3 c.142 T > G variant carriers (n = 106: 102 TG + 4 GG subjects) and wt controls (TT, n = 365): GMR = 0.95 (0.81-1.12) frequentist, 0.96 (0.80-1.16) Bayes. GMRs for variant carriers vs. wt controls were around unity also at different levels of exposure to valproate. CONCLUSION: Dose-adjusted lamotrigine troughs in epilepsy patients with variant UGT2B7 -161C > T or UGT1A4*3 c.142 T > G alleles are equivalent to those in their respective wt peers.


Subject(s)
Epilepsy , Valproic Acid , Humans , Adult , Lamotrigine/therapeutic use , Valproic Acid/therapeutic use , Alleles , Bayes Theorem , Polymorphism, Single Nucleotide , Epilepsy/drug therapy , Epilepsy/genetics , Anticonvulsants/therapeutic use , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Genotype , UDP-Glucuronosyltransferase 1A9
2.
Pharmacogenomics ; 20(15): 1093-1101, 2019 10.
Article in English | MEDLINE | ID: mdl-31588875

ABSTRACT

Seizure control with antiepileptic drugs (AEDs) as well as susceptibility to adverse drug reactions varies among individuals with epilepsy. This interindividual variability is partly determined by genetic factors. However, genetic testing to predict the efficacy and toxicity of AEDs is limited and genetic variability is, as yet, largely unexplainable. Accordingly, genetic testing can only be advised in a very limited number of cases in clinical routine. Currently, by applying different methodologies, many trials have been undertaken to evaluate cost benefits of preventive pharmacogenetic analysis for patients. There is significant progress in sequencing technologies, and focus is on next-generation sequencing-based methods, like exome and genome sequencing. In this review, an overview of the current scientific knowledge considering the pharmacogenetics of AEDs is given.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Epilepsy/genetics , Exome/genetics , Genetic Testing/methods , Genome/genetics , Humans , Pharmacogenetics/methods , Pharmacogenomic Testing/methods , Polymorphism, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...