Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Neuroimage ; 290: 120563, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38492685

ABSTRACT

Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = 0.25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = 0.19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.


Subject(s)
Brain , Connectome , Adult , Humans , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging/methods , Connectome/methods , Diffusion Magnetic Resonance Imaging
2.
PLoS Biol ; 22(2): e3002489, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315722

ABSTRACT

The brain connectome is an embedded network of anatomically interconnected brain regions, and the study of its topological organization in mammals has become of paramount importance due to its role in scaffolding brain function and behavior. Unlike many other observable networks, brain connections incur material and energetic cost, and their length and density are volumetrically constrained by the skull. Thus, an open question is how differences in brain volume impact connectome topology. We address this issue using the MaMI database, a diverse set of mammalian connectomes reconstructed from 201 animals, covering 103 species and 12 taxonomy orders, whose brain size varies over more than 4 orders of magnitude. Our analyses focus on relationships between volume and modular organization. After having identified modules through a multiresolution approach, we observed how connectivity features relate to the modular structure and how these relations vary across brain volume. We found that as the brain volume increases, modules become more spatially compact and dense, comprising more costly connections. Furthermore, we investigated how spatial embedding shapes network communication, finding that as brain volume increases, nodes' distance progressively impacts communication efficiency. We identified modes of variation in network communication policies, as smaller and bigger brains show higher efficiency in routing- and diffusion-based signaling, respectively. Finally, bridging network modularity and communication, we found that in larger brains, modular structure imposes stronger constraints on network signaling. Altogether, our results show that brain volume is systematically related to mammalian connectome topology and that spatial embedding imposes tighter restrictions on larger brains.


Subject(s)
Connectome , Animals , Connectome/methods , Brain , Mammals , Databases, Factual , Communication , Nerve Net
3.
Cell Rep ; 43(2): 113691, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38244198

ABSTRACT

Amyloid-ß (Aß) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aß and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aß (gene-to-Aß associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aß and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aß and the gene-to-tau associations. These findings may explain the discordance between regional Aß and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Transcriptome/genetics , Alzheimer Disease/genetics , Gene Expression Profiling , Amyloid beta-Peptides , Cognitive Dysfunction/genetics
4.
Proc Natl Acad Sci U S A ; 121(5): e2320953121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252843

ABSTRACT

The vertebrate spinal cord (SP) is the long, thin extension of the brain forming the central nervous system's caudal sector. Functionally, the SP directly mediates motor and somatic sensory interactions with most parts of the body except the face, and it is the preferred model for analyzing relatively simple reflex behaviors. Here, we analyze the organization of axonal connections between the 50 gray matter regions forming the bilaterally symmetric rat SP. The assembled dataset suggests that there are about 385 of a possible 2,450 connections between the 50 regions for a connection density of 15.7%. Multiresolution consensus cluster analysis reveals a hierarchy of structure-function subsystems in this neural network, with 4 subsystems at the top level and 12 at the bottom-level. The top-level subsystems include a) a bilateral subsystem related most clearly to somatic and autonomic motor functions and centered in the ventral horn and intermediate zone; b) a bilateral subsystem associated with general somatosensory functions and centered in the base, neck, and head of the dorsal horn; and c) a pair of unilateral, bilaterally symmetric subsystems associated with nociceptive information processing and occupying the apex of the dorsal horn. The intrinsic SP network displayed no hubs, rich club, or small-world attributes, which are common measures of global functionality. Advantages and limitations of our methodology are discussed in some detail. The present work is part of a comprehensive project to assemble and analyze the neurome of a mammalian nervous system and its interactions with the body.


Subject(s)
Mammals , Spinal Cord Dorsal Horn , Rats , Animals , Gray Matter , Axons , Brain
5.
Brain Imaging Behav ; 18(1): 243-255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008852

ABSTRACT

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Time Factors , Magnetic Resonance Imaging , Brain , Cognition , Nerve Net
6.
Proc Natl Acad Sci U S A ; 120(52): e2313997120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109532

ABSTRACT

The rhombicbrain (rhombencephalon or intermediate sector) is the vertebrate central nervous system part between the forebrain-midbrain (rostral sector) and spinal cord (caudal sector), and it has three main divisions: pons, cerebellum, and medulla. Using a data-driven approach, here we examine intrinsic rhombicbrain (intrarhombicbrain) network architecture that in rat consists of 52,670 possible axonal connections between 230 gray matter regions (115 bilaterally symmetrical pairs). Our analysis indicates that only 8,089 (15.4%) of these connections exist. Multiresolution consensus cluster analysis yields a nested hierarchy model of rhombicbrain subsystems that at the top level are associated with 1) the cerebellum and vestibular nuclei, 2) orofacial-pharyngeal-visceral integration, and 3) auditory connections; the bottom level has 68 clusters, ranging in size from 2 to 11 regions. The model provides a basis for functional hypothesis development and interrogation. More granular network analyses performed on the intrinsic connectivity of individual and combined main rhombicbrain divisions (pons, cerebellum, medulla, pons + cerebellum, and pons + medulla) demonstrate the mutability of network architecture in response to the addition or subtraction of connections. Clear differences between the structure-function network architecture of the rhombicbrain and forebrain-midbrain are discussed, with a stark comparison provided by the subsystem and small-world organization of the cerebellar cortex and cerebral cortex. Future analysis of the connections within and between the forebrain-midbrain and rhombicbrain will provide a model of brain neural network architecture in a mammal.


Subject(s)
Cerebellum , Pons , Rats , Animals , Prosencephalon , Central Nervous System , Mammals
7.
medRxiv ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38014005

ABSTRACT

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.

8.
Netw Neurosci ; 7(3): 926-949, 2023.
Article in English | MEDLINE | ID: mdl-37781150

ABSTRACT

Edge time series decompose functional connectivity into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames (time points when the global co-fluctuation amplitude takes on its largest value), including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations (peaks in co-fluctuation time series but of lower amplitude). Here, we directly address those questions, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multiscale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.

9.
Trends Cogn Sci ; 27(11): 1068-1084, 2023 11.
Article in English | MEDLINE | ID: mdl-37716895

ABSTRACT

Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.


Subject(s)
Connectome , Neurosciences , Humans , Brain , Neuroimaging , Connectome/methods , Magnetic Resonance Imaging , Nerve Net
10.
Sci Rep ; 13(1): 15698, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735201

ABSTRACT

Large-scale brain networks reveal structural connections as well as functional synchronization between distinct regions of the brain. The latter, referred to as functional connectivity (FC), can be derived from neuroimaging techniques such as functional magnetic resonance imaging (fMRI). FC studies have shown that brain networks are severely disrupted by stroke. However, since FC data are usually large and high-dimensional, extracting clinically useful information from this vast amount of data is still a great challenge, and our understanding of the functional consequences of stroke remains limited. Here, we propose a dimensionality reduction approach to simplify the analysis of this complex neural data. By using autoencoders, we find a low-dimensional representation encoding the fMRI data which preserves the typical FC anomalies known to be present in stroke patients. By employing the latent representations emerging from the autoencoders, we enhanced patients' diagnostics and severity classification. Furthermore, we showed how low-dimensional representation increased the accuracy of recovery prediction.


Subject(s)
Brain , Stroke , Humans , Brain/diagnostic imaging , Stroke/diagnostic imaging , Neuroimaging
11.
medRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645867

ABSTRACT

Amyloid-ß (Aß) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aß and tau pathologies than others, gene expression may play a role. We studied the association between brain-wide gene expression profiles and regional vulnerability to Aß (gene-to-Aß associations) and tau (gene-to-tau associations) pathologies leveraging two large independent cohorts (n = 715) of participants along the AD continuum. We identified several AD susceptibility genes and gene modules in a gene co-expression network with expression profiles related to regional vulnerability to Aß and tau pathologies in AD. In particular, we found that the positive APOE -to-tau association was only seen in the AD cohort, whereas patients with AD and frontotemporal dementia shared similar positive MAPT -to-tau association. Some AD candidate genes showed sex-dependent negative gene-to-Aß and gene-to-tau associations. In addition, we identified distinct biochemical pathways associated with the gene-to-Aß and the gene-to-tau associations. Finally, we proposed a novel analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations. Taken together, our study identified distinct gene expression profiles and biochemical pathways that may explain the discordance between regional Aß and tau pathologies, and filled the gap between gene-to-pathology associations and cognitive dysfunction in individual AD patients that may ultimately help identify novel personalized pathogenetic biomarkers and therapeutic targets. One Sentence Summary: We identified replicable cognition-related associations between regional gene expression profiles and selectively regional vulnerability to amyloid-ß and tau pathologies in AD.

12.
J Neurosci ; 43(34): 5989-5995, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612141

ABSTRACT

The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity. Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper understanding of the brain and its functions, as well as offering new challenges for network science.


Subject(s)
Neurosciences , Humans , Brain , Drive , Neurons , Research Personnel
13.
Proc Natl Acad Sci U S A ; 120(30): e2300888120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37467265

ABSTRACT

The standard approach to modeling the human brain as a complex system is with a network, where the basic unit of interaction is a pairwise link between two brain regions. While powerful, this approach is limited by the inability to assess higher-order interactions involving three or more elements directly. In this work, we explore a method for capturing higher-order dependencies in multivariate data: the partial entropy decomposition (PED). Our approach decomposes the joint entropy of the whole system into a set of nonnegative atoms that describe the redundant, unique, and synergistic interactions that compose the system's structure. PED gives insight into the mathematics of functional connectivity and its limitation. When applied to resting-state fMRI data, we find robust evidence of higher-order synergies that are largely invisible to standard functional connectivity analyses. Our approach can also be localized in time, allowing a frame-by-frame analysis of how the distributions of redundancies and synergies change over the course of a recording. We find that different ensembles of regions can transiently change from being redundancy-dominated to synergy-dominated and that the temporal pattern is structured in time. These results provide strong evidence that there exists a large space of unexplored structures in human brain data that have been largely missed by a focus on bivariate network connectivity models. This synergistic structure is dynamic in time and likely will illuminate interesting links between brain and behavior. Beyond brain-specific application, the PED provides a very general approach for understanding higher-order structures in a variety of complex systems.


Subject(s)
Brain Mapping , Brain , Humans , Entropy , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Rest
14.
Nat Rev Neurosci ; 24(9): 557-574, 2023 09.
Article in English | MEDLINE | ID: mdl-37438433

ABSTRACT

Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.


Subject(s)
Brain , Cell Communication , Humans , Brain/physiology , Cognition , Connectome/methods , Nerve Net/physiology , Neurosciences
15.
Neuroimage ; 277: 120266, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37414231

ABSTRACT

Dynamic models of ongoing BOLD fMRI brain dynamics and models of communication strategies have been two important approaches to understanding how brain network structure constrains function. However, dynamic models have yet to widely incorporate one of the most important insights from communication models: the brain may not use all of its connections in the same way or at the same time. Here we present a variation of a phase delayed Kuramoto coupled oscillator model that dynamically limits communication between nodes on each time step. An active subgraph of the empirically derived anatomical brain network is chosen in accordance with the local dynamic state on every time step, thus coupling dynamics and network structure in a novel way. We analyze this model with respect to its fit to empirical time-averaged functional connectivity, finding that, with the addition of only one parameter, it significantly outperforms standard Kuramoto models with phase delays. We also perform analyses on the novel time series of active edges it produces, demonstrating a slowly evolving topology moving through intermittent episodes of integration and segregation. We hope to demonstrate that the exploration of novel modeling mechanisms and the investigation of dynamics of networks in addition to dynamics on networks may advance our understanding of the relationship between brain structure and function.


Subject(s)
Brain , Models, Neurological , Humans , Neural Pathways , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
16.
Cell Rep ; 42(6): 112585, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37285265

ABSTRACT

Mapping the human face-processing network is typically done during rest or using isolated, static face images, overlooking widespread cortical interactions obtained in response to naturalistic face dynamics and context. To determine how inter-subject functional correlation (ISFC) relates to face recognition scores, we measure cortical connectivity patterns in response to a dynamic movie in typical adults (N = 517). We find a positive correlation with recognition scores in edges connecting the occipital visual and anterior temporal regions and a negative correlation in edges connecting the attentional dorsal, frontal default, and occipital visual regions. We measure the inter-subject stimulus-evoked response at a single TR resolution and demonstrate that co-fluctuations in face-selective edges are related to activity in core face-selective regions and that the ISFC patterns peak during boundaries between movie segments rather than during the presence of faces. Our approach demonstrates how face processing is linked to fine-scale dynamics in attentional, memory, and perceptual neural circuitry.


Subject(s)
Brain Mapping , Facial Recognition , Adult , Humans , Brain Mapping/methods , Motion Pictures , Magnetic Resonance Imaging/methods , Temporal Lobe
18.
Neuroimage ; 277: 120246, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37364742

ABSTRACT

Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Rare states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture and to be highly subject-specific. However, it is unclear whether such network-defining states also contribute to individual variations in cognitive abilities - which strongly rely on the interactions among distributed brain regions. By introducing CMEP, a new eigenvector-based prediction framework, we show that as few as 16 temporally separated time frames (< 1.5% of 10 min resting-state fMRI) can significantly predict individual differences in intelligence (N = 263, p < .001). Against previous expectations, individual's network-defining time frames of particularly high cofluctuation do not predict intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest connectivity, temporally distributed information is necessary to extract information about cognitive abilities. This information is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.


Subject(s)
Brain , Connectome , Humans , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Brain Mapping/methods , Connectome/methods , Magnetic Resonance Imaging/methods , Intelligence , Nerve Net/diagnostic imaging
19.
ArXiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214134

ABSTRACT

The brain is a complex system comprising a myriad of interacting elements, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such intricate systems, offering a framework for integrating multiscale data and complexity. Here, we discuss the application of network science in the study of the brain, addressing topics such as network models and metrics, the connectome, and the role of dynamics in neural networks. We explore the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease, and discuss the potential for collaboration between network science and neuroscience communities. We underscore the importance of fostering interdisciplinary opportunities through funding initiatives, workshops, and conferences, as well as supporting students and postdoctoral fellows with interests in both disciplines. By uniting the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way towards a deeper understanding of the brain and its functions.

20.
Commun Biol ; 6(1): 451, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095282

ABSTRACT

One of the most well-established tools for modeling the brain is the functional connectivity network, which is constructed from pairs of interacting brain regions. While powerful, the network model is limited by the restriction that only pairwise dependencies are considered and potentially higher-order structures are missed. Here, we explore how multivariate information theory reveals higher-order dependencies in the human brain. We begin with a mathematical analysis of the O-information, showing analytically and numerically how it is related to previously established information theoretic measures of complexity. We then apply the O-information to brain data, showing that synergistic subsystems are widespread in the human brain. Highly synergistic subsystems typically sit between canonical functional networks, and may serve an integrative role. We then use simulated annealing to find maximally synergistic subsystems, finding that such systems typically comprise ≈10 brain regions, recruited from multiple canonical brain systems. Though ubiquitous, highly synergistic subsystems are invisible when considering pairwise functional connectivity, suggesting that higher-order dependencies form a kind of shadow structure that has been unrecognized by established network-based analyses. We assert that higher-order interactions in the brain represent an under-explored space that, accessible with tools of multivariate information theory, may offer novel scientific insights.


Subject(s)
Brain Mapping , Information Theory , Humans , Brain , Cerebral Cortex , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...