Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 642: 1108-1117, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30045492

ABSTRACT

Food insecurity and declining availability of freshwater and new productive land in water-scarce areas and countries necessitate effective use of marginal-quality waters and underperforming soils. High­magnesium waters and soils are emerging examples of water quality deterioration and land degradation leading to environmental and food security constraints in several irrigation schemes. A ratio of magnesium-to-calcium > 1 in irrigation waters and an exchangeable magnesium percentage > 25% in soils are considered high enough to result in soil degradation and impact crop yields negatively. These soil and water resources occur in the Aral Sea Basin in Central Asian countries, the Cauca River Valley in Colombia, the Central Plateau Basin in Iran, the Indus Basin in Pakistan, the Indo-Gangetic Plains in India, the Murray-Darling Basin in Australia, and the Coastal Mountain Range in California, among others. With limited and scattered information, their occurrence remains hidden or unnoticed in many cases due to the lack of criteria in water quality assessment and soil classification systems. Managing high­magnesium waters and soils requires a source of calcium to mitigate magnesium effects, in addition to an effective drainage system for safe disposal of excess magnesium salts. There is a need to put high­magnesium waters and soils on the public policy agenda. Pertinent policies can catalyze stakeholders' involvement in supporting water and land quality monitoring systems and introducing innovative financial mechanisms to facilitate provision of calcium-supplying amendments in affected areas. Equally important would be strengthening institutional and professionals' capacity, enhancing institutional collaboration, encouraging private sector involvement in at-risk areas, and engaging local communities and farmers. These efforts will support the 2030 Sustainable Development Agenda. Eradicating extreme poverty and meeting the Sustainable Development Goals in water-scarce areas without adequately addressing underperforming land and water resources is highly unlikely.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Magnesium/analysis , Agriculture , Australia , California , Colombia , Food Supply , India , Iran , Pakistan , Soil
2.
Langmuir ; 33(1): 45-55, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27977205

ABSTRACT

The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (C3A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in C3A dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of C3A occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto C3A, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO42- on the partially dissolved C3A solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for C3A dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon C3A dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated C3A and thus PC systems, which is important to better controlling the workability of fresh PC concrete.

3.
J Colloid Interface Sci ; 490: 608-620, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27930922

ABSTRACT

The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs (134Cs, 135Cs, 137Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer. Our simulation results are broadly consistent with affinities and selectivities that have been inferred from surface complexation models. Cation exchange on the basal planes is thermodynamically ideal, but exchange on edge surfaces and within interlayers shows complex, thermodynamically non-ideal behavior. The basal planes are weakly Cs-selective, while edges and interlayers have much higher affinity for Cs. The dynamics of NaCs exchange are rapid for both cations on the basal planes, but considerably slower for Cs localized on edge surfaces. In addition to new insights into Cs adsorption and exchange with Na on illite, we report the development of a methodology capable of simulating fully-flexible clay mineral nanoparticles with stable edge surfaces using a well-tested interatomic potential model.

4.
Environ Sci Technol ; 48(18): 10681-9, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25180562

ABSTRACT

Mercury (Hg) is a toxicant of global concern that accumulates in organisms as methyl Hg. The production of methyl Hg by anaerobic bacteria may be limited in anoxic sediments by the sequestration of divalent Hg [Hg(II)] into a solid phase or by the formation of elemental Hg [Hg(0)]. We tested the hypothesis that nanocrystalline mackinawite (tetragonal FeS), which is abundant in sediments where Hg is methylated, both sorbs and reduces Hg(II). Mackinawite suspensions were equilibrated with dissolved Hg(II) in batch reactors. Examination of the solid phase using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Hg(II) was indeed reduced in FeS suspensions. Measurement of purgeable Hg using cold vapor atomic fluorescence spectrometry (CVAFS) from FeS suspensions and control solutions corroborated the production of Hg(0) that was observed spectroscopically. However, a fraction of the Hg(II) initially added to the suspensions remained in the divalent state, likely in the form of ß-HgS-like clusters associated with the FeS surface or as a mixture of ß-HgS and surface-associated species. Complexation by dissolved S(-II) in anoxic sediments hinders Hg(0) formation, but, by contrast, Hg(II)-S(-II) species are reduced in the presence of mackinawite, producing Hg(0) after only 1 h of reaction time. The results of our work support the idea that Hg(0) accounts for a significant fraction of the total Hg in wetland and estuarine sediments.


Subject(s)
Environmental Pollutants/chemistry , Ferrous Compounds/chemistry , Geologic Sediments/chemistry , Mercuric Chloride/chemistry , Mercury/chemistry , Nanoparticles/chemistry , Anaerobiosis , Environmental Pollutants/analysis , Mercuric Chloride/analysis , Mercury/analysis , Oxidation-Reduction , Solubility , Solutions , Spectrometry, Fluorescence , Surface Properties , X-Ray Absorption Spectroscopy
5.
Environ Toxicol Chem ; 32(7): 1467-78, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23456646

ABSTRACT

Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC.


Subject(s)
Anti-Infective Agents/chemistry , Benzopyrans/chemistry , Chemical Phenomena , Ciprofloxacin/chemistry , Environmental Pollutants/chemistry , Soil/chemistry , Adsorption , Anti-Infective Agents/analysis , Ciprofloxacin/analysis , Environmental Pollutants/analysis , Models, Chemical , Rivers/chemistry , Spectrometry, Fluorescence
6.
Environ Sci Technol ; 45(17): 7338-44, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21780745

ABSTRACT

Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6-8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH ≥ 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.


Subject(s)
Biomass , Nickel/chemistry , Oxides/chemistry , Oxides/metabolism , Pseudomonas putida/chemistry , Pseudomonas putida/metabolism , Adsorption , Biofilms , Metals/chemistry , X-Ray Absorption Spectroscopy/methods
7.
J Colloid Interface Sci ; 360(2): 701-15, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21571296

ABSTRACT

We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, ß-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the ß- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces.

8.
Environ Toxicol Chem ; 29(1): 90-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20821423

ABSTRACT

A comprehensive assessment of the potential impacts of antimicrobials released into the environment requires an understanding of their sequestration by natural particles. Of particular interest are the strong interactions of antimicrobials with natural organic matter (NOM), which are believed to reduce their bioavailability, retard their abiotic and biotic degradation, and facilitate their persistence in soils and aquatic sediments. Molecular dynamics (MD) relaxation studies of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), interacting with a model humic substance (HS) in a hydrated environment, were performed to elucidate the mechanisms of these interactions. Specifically, a zwitterionic Cipro molecule, the predominant species at circumneutral pH, was reacted either with protonated HS or deprotonated HS bearing Ca, Mg, or Fe(II) cations. The HS underwent conformational changes through rearrangements of its hydrophobic and hydrophilic regions and disruption of its intramolecular H-bonds to facilitate favorable intermolecular H-bonding interactions with Cipro. Complexation of the metal cations with HS carboxylates appeared to impede binding of the positively charged amino group of Cipro with these negatively charged HS complexation sites. On the other hand, an outer-sphere complex between Cipro and the HS-bound cation led to ternary Cipro-metal-HS complexes in the case of Mg-HS and Fe(II)-HS, but no such bridging interaction occurred with Ca-HS. The results suggested that the ionic potential (valence/ionic radius) of the divalent cation may be a determining factor in the formation of the ternary complex, with high ionic potential favoring the bridging interaction. Environ. Toxicol. Chem. 2010;29:90-98. (c) 2009 SETAC.


Subject(s)
Anti-Infective Agents/chemistry , Ciprofloxacin/chemistry , Humic Substances , Adsorption , Hydrogen Bonding , Models, Molecular , Molecular Conformation
9.
Environ Sci Technol ; 44(6): 2085-91, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20146523

ABSTRACT

In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.


Subject(s)
Diffusion , Models, Molecular , Silicates/chemistry , Water Pollutants, Chemical/chemistry , Cesium/chemistry , Environmental Monitoring , Kinetics , Molecular Dynamics Simulation , Nanopores , Particle Size , Porosity , Sodium/chemistry , Strontium/chemistry
10.
Environ Sci Technol ; 44(4): 1444-50, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20070075

ABSTRACT

Recent microcosm studies have revealed that fluoroquinolone (FQ) antibiotics can have ecotoxicological impacts on photosynthetic organisms, but little is known about the mechanisms of toxicity. We employed a combination of modeling and experimental techniques to explore how FQs may have these unintended secondary toxic effects. Structure-activity analysis revealed that the quinolone ring and secondary amino group typically present in FQ antibiotics may mediate their action as quinone site inhibitors in photosystem II (PS-II), a key enzyme in photosynthetic electron transport. Follow-up molecular simulations involving nalidixic acid (Naldx), a nonfluorinated quinolone with a demonstrated adverse impact on photosynthesis, and ciprofloxacin (Cipro), the most commonly used FQ antibiotic, showed that both may interfere stereochemically with the catalytic activity of reaction center II (RC-II), the pheophytin-quinone-type center present in PS-II. Naldx can occupy the same binding site as the secondary quinone acceptor (Q(B)) in RC-II and interact with amino acid residues required for the enzymatic reduction of Q(B). Cipro binds in a somewhat different manner, suggesting a different mechanism of interference. Fluorescence induction kinetics, a common method of screening for PS-II inhibition, recorded for photoexcited thylakoid membranes isolated from Cipro-exposed spinach chloroplasts, indicated that Cipro interferes with the transfer of energy from excited antenna chlorophyll molecules to the reaction center in RC-II ([Cipro] >or= 5 microM in vitro and >or=10 microM in vivo) and thus delays the kinetics of photoreduction of the primary quinone acceptor (Q(A); [Cipro] >or= 0.6 microM in vitro). Spinach plants exposed to Cipro exhibited severe growth inhibition characterized by a decrease in both the synthesis of leaves and growth of the roots ([Cipro] >or= 0.5 microM in vivo). Our results thus demonstrate that Cipro and related FQ antibiotics may interfere with photosynthetic pathways, in addition to causing morphological deformities in higher plants.


Subject(s)
Anti-Bacterial Agents/toxicity , Fluoroquinolones/toxicity , Photosynthesis/drug effects , Ciprofloxacin/toxicity , Molecular Structure , Nalidixic Acid/toxicity , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism
11.
Acc Chem Res ; 43(1): 2-9, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-19778036

ABSTRACT

Microorganisms control the redox cycling of manganese in the natural environment. Although the homogeneous oxidation of Mn(II) to form manganese oxide minerals is slow, solid MnO(2) is the stable form of manganese in the oxygenated portion of the biosphere. Diverse bacteria and fungi have evolved the ability to catalyze this process, producing the manganese oxides found in soils and sediments. Other bacteria have evolved to utilize MnO(2) as a terminal electron acceptor in respiration. This Account summarizes the properties of Mn oxides produced by bacteria (bacteriogenic MnO(2)) and our current thinking about the biochemical mechanisms of bacterial Mn(II) oxidation. According to X-ray absorption spectroscopy and X-ray scattering studies, the MnO(2) produced by bacteria consists of stacked hexagonal sheets of MnO(6) octahedra, but these particles are extremely small and have numerous structural defects, particularly cation vacancies. The defects provide coordination sites for binding exogenous metal ions, which can be adsorbed to a high loading. As a result, bacterial production of MnO(2) influences the bioavailability of these metals in the natural environment. Because of its high surface area and oxidizing power, bacteriogenic MnO(2) efficiently degrades biologically recalcitrant organic molecules to lower-molecular-mass compounds, spurring interest in using these properties in the bioremediation of xenobiotic organic compounds. Finally, bacteriogenic MnO(2) is reduced to soluble Mn(II) rapidly in the presence of exogenous ligands or sunlight. It can therefore help to regulate the bioavailability of Mn(II), which is known to protect organisms from superoxide radicals and is required to assemble the water-splitting complex in photosynthetic organisms. Bioinorganic chemists and microbiologists have long been interested in the biochemical mechanism of Mn(IV) oxide production. The reaction requires a two-electron oxidation of Mn(II), but genetic and biochemical evidence for several bacteria implicate multicopper oxidases (MCOs), which are only known to engage one-electron transfers from substrate to O(2). In experiments with the exosporium of a Mn(II)-oxidizing Bacillus species, we could trap the one-electron oxidation product, Mn(III), as a pyrophosphate complex in an oxygen-dependent reaction inhibited by azide, consistent with MCO catalysis. The Mn(III) pyrophosphate complex can further act as a substrate, reacting in the presence of the exosporium to produce Mn(IV) oxide. Although this process appears to be unprecedented in biology, it is reminiscent of the oxidation of Fe(II) to form Fe(2)O(3) in the ferritin iron storage protein. However, it includes a critical additional step of Mn(III) oxidation or disproportionation. We shall continue to investigate this biochemically unique process with purified enzymes.


Subject(s)
Bacteria/metabolism , Manganese Compounds/metabolism , Oxides/metabolism , Oxidoreductases/metabolism , Adsorption , Amino Acid Sequence , Cations , Manganese Compounds/chemistry , Molecular Sequence Data , Oxidation-Reduction , Oxides/chemistry , X-Ray Diffraction
12.
Biometals ; 22(4): 605-13, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19238560

ABSTRACT

Siderophores, biogenic chelating agents that facilitate Fe(III) uptake through the formation of strong complexes, also form strong complexes with Mn(III) and exhibit high reactivity with Mn (hydr)oxides, suggesting a pathway by which Mn may disrupt Fe uptake. In this review, we evaluate the major biogeochemical mechanisms by which Fe and Mn may interact through reactions with microbial siderophores: competition for a limited pool of siderophores, sorption of siderophores and metal-siderophore complexes to mineral surfaces, and competitive metal-siderophore complex formation through parallel mineral dissolution pathways. This rich interweaving of chemical processes gives rise to an intricate tapestry of interactions, particularly in respect to the biogeochemical cycling of Fe and Mn in marine ecosystems.


Subject(s)
Bacteria/metabolism , Iron/metabolism , Manganese/metabolism , Siderophores/metabolism , Molecular Structure , Siderophores/chemistry
13.
Environ Sci Technol ; 43(2): 343-9, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19238962

ABSTRACT

Siderophores, biogenic chelating agents that facilitate the solubilization and uptake of ferric iron, form stable complexes with a wide range of nutrient and contaminant metals and thus may profoundly affect their fate, transport, and biogeochemical cycling. To understand more comprehensively the factors that control the stability and reactivity, as well as the potential for microbial uptake, of metal-siderophore complexes, we probed the structures of complexes formed between the trihydroxamate siderophore desferrioxamine B (DFOB) and Cu(II), Ga(III), Mn(II), Ni(II), and Zn(II) in solution by using extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that all metals studied are dominantly in octahedral coordination, with significant Jahn-Teller distortion of the Cu(II)HDFOB(0) complex. Additionally, log-transformed complex stability constants correlate not only with the charge-normalized interatomic distances within the complex, affirming and expanding existing predictive relationships, but also with the Debye-Waller parameter of the first coordination shell. The derived structure-activity relationships not only quantitatively relate the measured physical architecture of aqueous complexes to their observed stability but also allow for the prediction of siderophore-metal stability constants.


Subject(s)
Metals/chemistry , Quantitative Structure-Activity Relationship , Siderophores/chemistry , Water/chemistry , Models, Chemical , Oxygen/chemistry , Spectrum Analysis
14.
Environ Toxicol Chem ; 27(11): 2304-10, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18547155

ABSTRACT

An understanding of the factors controlling the chemodynamics of fluoroquinolone antibiotics in different environmental matrices is a necessary prerequisite to the assessment of their potential impact on nontarget organisms in soils and receiving waters. Of particular interest are the complexes formed between fluoroquinolones and metal cations, which are believed to be important in the mechanism of sequestration of the antibiotic by minerals and natural organic matter. The structures of these complexes have not been fully resolved by conventional spectroscopy; therefore, molecular simulations may provide useful complementary insights. We present results from apparently the first molecular dynamics simulations of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), in aqueous complexes with five metal cations typically found in soils and surface waters: Ca2+, Mg2+, Fe2+, Na+, and K+. The interatomic potential functions employed in the simulations were validated by comparison with available structural data for solid-phase Cipro-hexahydrate and for the metal cations in aqueous solution. Although no comprehensive structural data on the aqueous complexes appear to be available, properties of the metal complexes predicted by our simulations agree with available data for solid-phase metal-Cipro complexes. Our results indicate that the ionic potential of the metal cation controls the stability of the complex formed and that the hydration number of the metal cation in aqueous solution determines its coordination number with O atoms in the metal-Cipro complex. In respect to environmental chemodynamics, our results imply that Cipro will form two configurations of bidendate chelates with metal centers on exposed surfaces of mineral oxides, water-bridged surface complexes with exchangeable cations in clay mineral interlayers, and cation-bridged complexes with functional groups in natural organic matter.


Subject(s)
Anti-Infective Agents/chemistry , Ciprofloxacin/chemistry , Metals/chemistry , Models, Molecular
15.
Phys Rev Lett ; 100(14): 146601, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518059

ABSTRACT

Enhanced photoconductivity of layered Mn(IV)O2 containing protonated Mn(IV) vacancy defects has been recently demonstrated, suggesting new technological possibilities for photoelectric conversion based on visible light harvesting. Using spin-polarized density functional theory, we provide the first direct evidence that such defects can indeed facilitate photoconductivity by (i) reducing the band-gap energy and (ii) separating electron and hole states. Our results thus support the proposition that nanosheet MnO2 offers an attractive new material for a variety of photoconductivity applications.

16.
J Colloid Interface Sci ; 312(2): 297-310, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17482201

ABSTRACT

Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.

17.
Environ Sci Technol ; 41(23): 8118-22, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18186346

ABSTRACT

Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the "macropore/nanopore" model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the "surface diffusion" model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm(-3) (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.3 kg dm(-3).


Subject(s)
Bentonite/chemistry , Cations/chemistry , Models, Theoretical , Sodium/chemistry , Diffusion , Environmental Monitoring/methods , Strontium/analysis
18.
Environ Sci Technol ; 39(23): 9009-15, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16382919

ABSTRACT

A critical examination of published data obtained primarily from recent nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies reveals an evolving new view of the molecular structure of soil humic substances. According to the new view, humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules intimately associated with a humic substance, such that they cannot be separated effectively by chemical or physical methods. Thus biomolecules strongly bound within humic fractions are by definition humic components, a conclusion that necessarily calls into question key biogeochemical pathways traditionally thought to be required for the formation of humic substances. Further research is needed to elucidate the intermolecular interactions that link humic components into supramolecular associations and to establish the pathways by which these associations emerge from the degradation of organic litter.


Subject(s)
Humic Substances , Micelles , Molecular Structure
19.
Environ Sci Technol ; 39(21): 8288-94, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16294865

ABSTRACT

Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH.


Subject(s)
Bacteria/chemistry , Biofilms , Zinc/chemistry , Hydrogen-Ion Concentration , Spectrum Analysis/methods
20.
Environ Sci Technol ; 39(16): 6037-44, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16173561

ABSTRACT

Recent studies suggest that aqueous Mn(ll) complexes, particularly those with non-carboxylated ligands such as microbial siderophores, may be stable in soil and aquatic environments. In this paper, we determine the stability constants for Mn(ll) and Mn(lll) complexes with the common trihydroxamate siderophore, desferrioxamine B (DFOB). Base and redox titrations were conducted to determine DFOB conditional protonation constants and conditional stability constants for 1:1 DFOB complexes with Mn(ll) and Mn(lll). The conditional protonation constants agree well with literature values. We determined stability constants for three Mn(ll)-DFOB species and one Mn(lll)-DFOB species at 25 degrees C in 0.1 M NaCl. The Mn(lll) HDFOB+ complex can be formed readily by air-oxidation of Mn(ll)-DFOB. This reaction exhibits pseudo first-order kinetics with a rate coefficient that can be characterized as the product of oxygen concentration with a linear combination of the concentrations of the three Mn(ll)-DFOB complexes. The second-order rate coefficients appearing in this linear combination are 1 to 2 orders of magnitude smaller than that associated with oxidation of the hydrolytic species Mn(OH)(0)2. The Mn(lll)HDFOB+ complex is stable for pH in the range of 7.0-11.3; but, at pH < 7.0 it decomposes by internal electron transfer, yielding oxidized DFOB products and Mn(ll). For p[H+] > 11.3, the complex degrades by disproportionation, yielding Mn(ll) and solid MnO2. This range of pH stability supports the hypothesis that aqueous Mn(lll) may play a vital role in the biogeochemical cycling of not only manganese, but also other elements, such as carbon, sulfur, nitrogen, oxygen, and redox-active metals.


Subject(s)
Deferoxamine/chemistry , Manganese Compounds/chemistry , Siderophores/chemistry , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...