Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069237

ABSTRACT

Nowadays, there is considerable attention toward the use of food waste from food processing as possible sources of compounds with health properties, such as anticancer activity. An example is tomato processing, which is responsible for generating a remarkable amount of waste (leaves, peel, seeds). Therefore, our goal was to evaluate the potential anticancer property of tomato extracts, in particular "Datterino" tomato (DT) and "Piccadilly" tomato (PT), and to study their phytochemical composition. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) results showed that these extracts are rich in alkaloids, flavonoids, fatty acids, lipids, and terpenes. Furthermore, their potential anticancer activity was evaluated in vitro by MTT assay. In particular, the percentage of cell viability was assessed in olfactory ensheathing cells (OECs), a particular glial cell type of the olfactory system, and in SH-SY5Y, a neuroblastoma cell line. All extracts (aqueous and ethanolic) did not lead to any significant change in the percentage of cell viability on OECs when compared with the control. Instead, in SH-SY5Y we observed a significant decrease in the percentage of cell viability, confirming their potential anticancer activity; this was more evident for the ethanolic extracts. In conclusion, tomato leaves extracts could be regarded as a valuable source of bioactive compounds, suitable for various applications in the food, nutraceutical, and pharmaceutical fields.


Subject(s)
Alkaloids , Neuroblastoma , Refuse Disposal , Solanum lycopersicum , Humans , Food Loss and Waste , Cell Survival , Neuroblastoma/drug therapy , Alkaloids/chemistry , Plant Extracts/chemistry , Steroids/analysis , Seeds/chemistry
3.
Pharmaceutics ; 15(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004552

ABSTRACT

Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.

4.
Antioxidants (Basel) ; 12(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36978998

ABSTRACT

Astaxanthin, a natural compound of Haematococcus pluvialis, possesses antioxidant, anti-inflammatory, anti-tumor and immunomodulatory activities. It also represents a potential therapeutic in Alzheimer's disease (AD), that is related to oxidative stress and agglomeration of proteins such as amyloid-beta (Aß). Aß is a neurotoxic protein and a substrate of tissue transglutaminase (TG2), an ubiquitary protein involved in AD. Herein, the effect of astaxanthin pretreatment on olfactory ensheathing cells (OECs) exposed to Aß(1-42) or by Aß(25-35) or Aß(35-25), and on TG2 expression were assessed. Vimentin, GFAP, nestin, cyclin D1 and caspase-3 were evaluated. ROS levels and the percentage of cell viability were also detected. In parallel, delayed luminescence (DL) was used to monitor mitochondrial status. ASTA reduced TG2, GFAP and vimentin overexpression, inhibiting cyclin D1 levels and apoptotic pathway activation which induced an increase in the nestin levels. In addition, significant changes in DL intensities were particularly observed in OECs exposed to Aß toxic fragment (25-35), that completely disappear when OECs were pre-incubated in astaxantin. Therefore, we suggest that ASTA pre-treatment might represent an innovative mechanism to contrast TG2 overexpression in AD.

5.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36290586

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease representing the most prevalent cause of dementia. It is also related to the aberrant amyloid-beta (Aß) protein deposition in the brain. Since oxidative stress is involved in AD, there is a possible role of antioxidants present in the effected person's diet. Thus, we assessed the effect of the systemic administration of solid lipid nanoparticles (SLNs) to facilitate curcumin (CUR) delivery on TG2 isoform expression levels in Wild Type (WT) and in TgCRND8 (Tg) mice. An experimental model of AD, which expresses two mutated human amyloid precursor protein (APP) genes, was used. Behavioral studies were also performed to evaluate the improvement of cognitive performance and memory function induced by all treatments. The expression levels of Bcl-2, Cyclin-D1, and caspase-3 cleavage were evaluated as well. In this research, for the first time, we demonstrated that the systemic administration of SLNs-CUR, both in WT and in Tg mice, allows one to differently modulate TG2 isoforms, which act either on apoptotic pathway activation or on the ability of the protein to repair cellular damage in the brains of Tg mice. In this study, we also suggest that SLNs-CUR could be an innovative tool for the treatment of AD.

6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806203

ABSTRACT

Herein, we assessed the effect of full native peptide of amyloid-beta (Aß) (1-42) and its fragments (25-35 and 35-25) on tissue transglutaminase (TG2) and its isoforms (TG2-Long and TG2-Short) expression levels on olfactory ensheathing cells (OECs). Vimentin and glial fibrillary acid protein (GFAP) were also studied. The effect of the pre-treatment with indicaxanthin from Opuntia ficus-indica fruit on TG2 expression levels and its isoforms, cell viability, total reactive oxygen species (ROS), superoxide anion (O2-), and apoptotic pathway activation was assessed. The levels of Nestin and cyclin D1 were also evaluated. Our findings highlight that OECs exposure to Aß(1-42) and its fragments induced an increase in TG2 expression levels and a different expression pattern of its isoforms. Indicaxanthin pre-treatment reduced TG2 overexpression, modulating the expression of TG2 isoforms. It reduced total ROS and O2- production, GFAP and Vimentin levels, inhibiting apoptotic pathway activation. It also induced an increase in the Nestin and cyclin D1 expression levels. Our data demonstrated that indicaxanthin pre-treatment stimulated OECs self-renewal through the reparative activity played by TG2. They also suggest that Aß might modify TG2 conformation in OECs and that indicaxanthin pre-treatment might modulate TG2 conformation, stimulating neural regeneration in Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/metabolism , Betaxanthins/pharmacology , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Enzymologic , Olfactory Bulb/metabolism , Pyridines/pharmacology , Transglutaminases/metabolism , Alzheimer Disease/metabolism , Animals , Apoptosis , Cell Differentiation , Cyclin D1/metabolism , Glial Fibrillary Acidic Protein/metabolism , Humans , Mice , Nerve Regeneration , Nestin/metabolism , Opuntia/chemistry , Oxidative Stress , Protein Glutamine gamma Glutamyltransferase 2 , Protein Isoforms , Reactive Oxygen Species/metabolism , Vimentin/metabolism
7.
Nanomaterials (Basel) ; 11(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546352

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder associated with marked oxidative stress at the level of the brain. Recent studies indicate that increasing the antioxidant capacity could represent a very promising therapeutic strategy for AD treatment. Astaxanthin (AST), a powerful natural antioxidant, could be a good candidate for AD treatment, although its use in clinical practice is compromised by its high instability. In order to overcome this limit, our attention focused on the development of innovative AST-loaded stealth lipid nanoparticles (AST-SSLNs) able to improve AST bioavailability in the brain. AST-SSLNs prepared by solvent-diffusion technique showed technological parameters suitable for parenteral administration (<200 nm). Formulated nanosystems were characterized by calorimetric studies, while their toxicological profile was evaluated by the MTT assay on the stem cell line OECs (Olfactory Ensheathing Cells). Furthemore, the protective effect of the nanocarriers was assessed by a long-term stability study and a UV stability assay confirming that the lipid shell of the nanocarriers was able to preserve AST concentration in the formulation. SSLNs were also capable of preserving AST's antioxidant capacity as demonstrated in the oxygen radical absorbance capacity (ORAC) assay. In conclusion, these preliminary studies outline that SSLNs could be regarded as promising carriers for systemic administration of compounds such as AST aimed at AD treatment.

8.
Molecules ; 25(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629951

ABSTRACT

Curcumin (CUR) has a wide range of pharmacological properties, including anti-inflammatory and antioxidant activities, and it can be considered a good candidate for the potential treatment of central nervous system (CNS) pathologies, although its use in clinical practice is compromised due to its high lipophilicity. Solid lipid nanoparticles (SLNs) are well-known nanocarriers representing a consolidated approach for the delivery of lipophilic compounds, but their systemic use is limited due their short half-life. The formulation of stealth SLNs (pSLNs) could be a valid strategy to overcome this limit. Curcumin-loaded-pSLNs were prepared by the solvent evaporation method. Formulation was characterized for their mean size, zeta potential, size distribution, and morphology. Drug antioxidant activity was evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay. Finally, the obtained formulations were analyzed in terms of long-term stability. Curcumin-loaded-pSLNs showed good technological parameters with a mean particle size below 200 nm, as confirmed by TEM images, and a zeta potential value around -30 mV, predicting good long-term stability. Differential Scanning Calorimetry (DSC) analysis confirmed that PEG micelles interacted with the SLN surface; this suggests the location of the PEG on the pSLN surface. Therefore, these preliminary studies suggest that the produced formulation could be regarded as a promising carrier for the systemic administration.


Subject(s)
Curcumin/administration & dosage , Curcumin/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Stem Cells/drug effects , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/administration & dosage , Antioxidants/chemistry , Cell Proliferation , Cells, Cultured , Dental Pulp/cytology , Dental Pulp/drug effects , Humans , Stem Cells/cytology
9.
Sci Rep ; 10(1): 4680, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170186

ABSTRACT

Herein, we assessed the effect of Ferulic Acid (FA), a natural antioxidant with anti-cancer effect, on the human glioblastoma cells through molecular and Delayed Luminescence (DL) studies. DL, a phenomenon of ultra-week emission of optical photons, was used to monitor mitochondrial assessment. The effect of FA loaded in nanostructured lipid carriers (NLCs) was also assessed. To validate NLCs as a drug delivery system for glioblastoma treatment, particular attention was focused on their effect. We found that free FA induced a significant decrease in c-Myc and Bcl-2 expression levels accompanied by the apoptotic pathway activation. Blank NLCs, even if they did not induce cytotoxicity and caspase-3 cleavage, decreased Bcl-2, ERK1/2, c-Myc expression levels activating PARP-1 cleavage. The changes in DL intensity and kinetics highlighted a possible effect of nanoparticle matrix on mitochondria, through the involvement of the NADH pool and ROS production that, in turn, activates ERK1/2 pathways. All the effects on protein expression levels and on the activation of apoptotic pathway appeared more evident when the cells were exposed to FA loaded in NLCs. We demonstrated that the observed effects are due to a synergic pro-apoptotic influence exerted by FA, whose bio-availability increases in the glioblastoma cells, and NLCs formulation.


Subject(s)
Apoptosis/drug effects , Coumaric Acids/administration & dosage , Drug Carriers , Lipids , Luminescent Measurements , Apoptosis/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Gene Expression , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction
10.
J Exp Biol ; 223(Pt 5)2020 02 28.
Article in English | MEDLINE | ID: mdl-32041804

ABSTRACT

Several evidences have suggested the ability of radiofrequency electromagnetic fields to influence biological systems, even if the action mechanisms are not well understood. There are few data on the effect of radiofrequency electromagnetic fields on self-renewal of neural progenitor cells. A particular glial type that shows characteristics of stem cells is olfactory ensheathing cells (OECs). Herein, we assessed the non-thermal effects induced on OECs through radiofrequency electromagnetic fields changing the envelope of the electromagnetic wave. Primary OEC cultures were exposed to continuous or amplitude-modulated 900 MHz electromagnetic fields, in the far-field condition and at different exposure times (10, 15, 20 min). The expression of OEC markers (S-100 and nestin), cytoskeletal proteins (GFAP and vimentin), apoptotic pathway activation by caspase-3 cleavage and cell viability were evaluated. Our results highlight that 20 min of exposure to continuous or amplitude-modulated 900 MHz electromagnetic fields induced a different and significant decrease in cell viability. In addition, according to the electromagnetic field waveform, diverse dynamic changes in the expression of the analysed markers in OECs and activation of the apoptotic pathway were observed. The data suggest that radiofrequency electromagnetic fields might play different and important roles in the self-renewal of OEC stem cells, which are involved in nervous system repair.


Subject(s)
Cytoskeletal Proteins/metabolism , Mice/physiology , Olfactory Bulb/metabolism , Radio Waves/adverse effects , Animals , Animals, Newborn , Cells, Cultured , Olfactory Bulb/radiation effects
11.
Eur J Med Chem ; 174: 226-235, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31042618

ABSTRACT

A new set of 5-chlorobenzoxazole- and 5-chlorobenzothiazole-based derivatives containing the azepane ring as a basic moiety was designed, synthesized and evaluated through binding assays to measure their affinity and selectivity towards σ1 and σ2 receptors. Compounds 19, 22 and 24, with a four units spacer between the bicyclic scaffold and the azepane ring, showed nanomolar affinity towards both receptor subtype and the best Ki values (Ki σ1 = 1.27, 2.30, and 0.78 and Ki σ2 = 7.9, 3.8, and 7.61 nM, respectively). Evaluation of cytotoxic and apoptotic effects in MCF-7 human cancer cells was useful to assess σ2 receptor activity, while an in vivo mice model of inflammatory pain allowed to analyze σ1 receptor pharmacological properties. In vitro and in vivo results suggested that compound 19 is a σ1/σ2 agonist, compound 24 a σ1 antagonist/σ2 agonist, whereas compound 22 might act as σ1 antagonist/σ2 partial agonist. Due to their pharmacological profile, a potential therapeutic application in cancer of aforesaid novel σ1/σ2 receptor ligands, especially 22 and 24, is proposed.


Subject(s)
Analgesics/therapeutic use , Benzothiazoles/therapeutic use , Benzoxazoles/therapeutic use , Receptors, sigma/agonists , Receptors, sigma/antagonists & inhibitors , Analgesics/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Apoptosis/drug effects , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Humans , Ligands , MCF-7 Cells , Mice , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...