Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(6): e0263222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36409086

ABSTRACT

Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers. IMPORTANCE Staphylococcus epidermidis is a bacteria that broadly inhabits healthy human skin, yet it is also a common cause of skin infections and bloodstream infections associated with implanted medical devices. Because human skin has many different types of S. epidermidis, each containing different genes, our goal is to determine how these different genes allow S. epidermidis to switch from healthy growth in the skin to being an infectious pathogen. Understanding this switch is critical to developing new strategies to prevent and treat S. epidermidis infections.


Subject(s)
Staphylococcal Infections , Humans , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Transcriptome , Skin/microbiology
2.
mSphere ; 5(1)2020 02 12.
Article in English | MEDLINE | ID: mdl-32051236

ABSTRACT

The CRISPR/Cas system has significant potential to facilitate gene editing in a variety of bacterial species. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) represent modifications of the CRISPR/Cas9 system utilizing a catalytically inactive Cas9 protein for transcription repression and activation, respectively. While CRISPRi and CRISPRa have tremendous potential to systematically investigate gene function in bacteria, few programs are specifically tailored to identify guides in draft bacterial genomes genomewide. Furthermore, few programs offer open-source code with flexible design parameters for bacterial targeting. To address these limitations, we created GuideFinder, a customizable, user-friendly program that can design guides for any annotated bacterial genome. GuideFinder designs guides from NGG protospacer-adjacent motif (PAM) sites for any number of genes by the use of an annotated genome and FASTA file input by the user. Guides are filtered according to user-defined design parameters and removed if they contain any off-target matches. Iteration with lowered parameter thresholds allows the program to design guides for genes that did not produce guides with the more stringent parameters, one of several features unique to GuideFinder. GuideFinder can also identify paired guides for targeting multiplicity, whose validity we tested experimentally. GuideFinder has been tested on a variety of diverse bacterial genomes, finding guides for 95% of genes on average. Moreover, guides designed by the program are functionally useful-focusing on CRISPRi as a potential application-as demonstrated by essential gene knockdown in two staphylococcal species. Through the large-scale generation of guides, this open-access software will improve accessibility to CRISPR/Cas studies of a variety of bacterial species.IMPORTANCE With the explosion in our understanding of human and environmental microbial diversity, corresponding efforts to understand gene function in these organisms are strongly needed. CRISPR/Cas9 technology has revolutionized interrogation of gene function in a wide variety of model organisms. Efficient CRISPR guide design is required for systematic gene targeting. However, existing tools are not adapted for the broad needs of microbial targeting, which include extraordinary species and subspecies genetic diversity, the overwhelming majority of which is characterized by draft genomes. In addition, flexibility in guide design parameters is important to consider the wide range of factors that can affect guide efficacy, many of which can be species and strain specific. We designed GuideFinder, a customizable, user-friendly program that addresses the limitations of existing software and that can design guides for any annotated bacterial genome with numerous features that facilitate guide design in a wide variety of microorganisms.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Editing/instrumentation , Genome, Bacterial/genetics , Software , Gene Editing/methods , Programming Languages , RNA, Guide, Kinetoplastida/genetics
3.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004459

ABSTRACT

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Host Microbial Interactions/genetics , Microbiota/genetics , Polymorphism, Single Nucleotide , Skin/microbiology , Staphylococcus epidermidis/genetics , Adult , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Female , Healthy Volunteers , Humans , Male , Middle Aged , Phylogeny , Staphylococcus epidermidis/isolation & purification , Staphylococcus epidermidis/pathogenicity , Virulence/genetics , Young Adult
4.
Nat Microbiol ; 3(8): 858-859, 2018 08.
Article in English | MEDLINE | ID: mdl-30046171
SELECTION OF CITATIONS
SEARCH DETAIL
...