Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 38(5): 586-599, 2020 05.
Article in English | MEDLINE | ID: mdl-32393914

ABSTRACT

Digital Spatial Profiling (DSP) is a method for highly multiplex spatial profiling of proteins or RNAs suitable for use on formalin-fixed, paraffin-embedded (FFPE) samples. The approach relies on (1) multiplexed readout of proteins or RNAs using oligonucleotide tags; (2) oligonucleotide tags attached to affinity reagents (antibodies or RNA probes) through a photocleavable (PC) linker; and (3) photocleaving light projected onto the tissue sample to release PC oligonucleotides in any spatial pattern across a region of interest (ROI) covering 1 to ~5,000 cells. DSP is capable of single-cell sensitivity within an ROI using the antibody readout, with RNA detection feasible down to ~600 individual mRNA transcripts. We show spatial profiling of up to 44 proteins and 96 genes (928 RNA probes) in lymphoid, colorectal tumor and autoimmune tissues by using the nCounter system and 1,412 genes (4,998 RNA probes) by using next-generation sequencing (NGS). DSP may be used to profile not only proteins and RNAs in biobanked samples but also immune markers in patient samples, with potential prognostic and predictive potential for clinical decision-making.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Proteomics/methods , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, RNA , Software , Spatial Analysis , Tissue Fixation
2.
ACS Biomater Sci Eng ; 5(8): 3817-3827, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-33438422

ABSTRACT

Fusion of cancer cells is thought to contribute to tumor development and drug resistance. The low frequency of cell fusion events and the instability of fused cells have hindered our ability to understand the molecular mechanisms that govern cell fusion. We have demonstrated that several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation and longevity of fused cells can be regulated solely by biophysical factors. Dynamically tuning the adhesive area of the patterned substrates, reducing cytoskeletal tensions pharmacologically, altering matrix stiffness, and modulating pattern curvature all supported the spontaneous fusion and stability of these multinucleated giant cells. These observations highlight that the biomechanical microenvironment of cancer cells, including the matrix rigidity and interfacial curvature, can directly modulate their fusogenicity, an unexplored mechanism through which biophysical cues regulate tumor progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...