Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(14): 5569-5578, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35343987

ABSTRACT

Earlier reports have discussed the manifold opportunities that arise from the use of eco-friendly organic semiconductor dispersions as inks for printed electronics and, in particular, organic photovoltaics. To date, poly(3-hexylthiophene) (P3HT) plays an outstanding role since it has been the only organic semiconductor that formed nanoparticle dispersions with sufficient stability and concentration without the use of surfactants. This work elucidates the underlying mechanisms that lead to the formation of intrinsically stable P3HT dispersions and reveals prevailing electrostatic effects to rule the nanoparticle growth. The electrostatic dispersion stability can be enhanced by photo-generation of additional charges, depending on the light intensity and its wavelength. This facile, additive-free process provides a universal handle to also stabilize surfactant-free dispersions of other semiconducting polymers, which are frequently used to fabricate organic solar cells or other optoelectronic thin-film devices. The more generalized process understanding paves the way towards a universal synthesis route for organic nanoparticle dispersions.

2.
ACS Appl Mater Interfaces ; 13(44): 53252-53261, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34705411

ABSTRACT

The distinction of different organic materials in phase mixtures is hampered in electron microscopy because electron scattering does not strongly differ in carbon-based materials that mainly consist of light elements. A successful strategy for contrast enhancement is selective staining where one phase of a material mixture is labeled by heavier elements, but suitable staining agents are not available for all organic materials. This is also the case for bulk-heterojunction (BHJ) absorber layers of organic solar cells, which consist of interpenetrating networks of donor and acceptor domains. The domain structure strongly influences the power conversion efficiency, and nanomorphology optimization often requires real-space information on the sizes and interconnectivity of domains with nanometer resolution. In this work, we have developed an efficient approach to selectively stain sulfur-containing polymers by homogeneous Cu infiltration, which generates strong material contrast in scanning (transmission) electron microscopy (S(T)EM) images of polymer:fullerene BHJ layers. Cross-section lamellae of BHJ layers are prepared for STEM by focused-ion-beam milling and are attached to a Cu lift-out grid as a copper source. After thermal treatment at 200 °C for 3 h in air, sulfur-containing polymers are homogeneously infiltrated by Cu, while the fullerenes are not affected. Selective Cu staining is applied to map the phase distribution in PTB7:PC71BM BHJ layers fabricated with different processing additives to tailor the nanomorphology. The strong contrast between polymer and fullerene domains is the prerequisite for the three-dimensional reconstruction of the domain structure by focused-ion-beam/scanning-electron-microscopy tomography.

3.
Microscopy (Oxf) ; 68(4): 301-309, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31220309

ABSTRACT

Imaging the phase distribution of amorphous or partially crystalline organic materials at the nanoscale and analyzing the local atomic structure of individual phases has been a long-time challenge. We propose a new approach for imaging the phase distribution and for analyzing the local structure of organic materials based on scanning transmission electron diffraction (4D-STEM) pair distribution function analysis (PDF). We show that electron diffraction based PDF analysis can be used to characterize the short- and medium-range order in aperiodically packed organic molecules. Moreover, we show that 4D-STEM-PDF does not only provide local structural information with a resolution of a few nanometers, but can also be used to image the phase distribution of organic composites. The distinct and thickness independent contrast of the phase image is generated by utilizing the structural difference between the different types of molecules and taking advantage of the dose efficiency due to use of the full scattering signal. Therefore, this approach is particularly interesting for imaging unstained organic or polymer composites without distinct valence states for electron energy loss spectroscopy. We explore the possibilities of this new approach using [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as the archetypical and best-investigated semiconductor blend used in organic solar cells, compare our phase distribution with virtual dark-field analysis and validate our approach by electron energy loss spectroscopy.

4.
Adv Mater ; 29(43)2017 Nov.
Article in English | MEDLINE | ID: mdl-28991381

ABSTRACT

Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed.

5.
Macromol Rapid Commun ; 38(7)2017 Apr.
Article in English | MEDLINE | ID: mdl-28195679

ABSTRACT

Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A1 -D-A2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A1 -D-A2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm-2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes.


Subject(s)
Electric Power Supplies , Polymers/chemistry , Solar Energy , Molecular Structure , Polymers/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...