Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
BMC Musculoskelet Disord ; 25(1): 449, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844899

ABSTRACT

BACKGROUND: Patient-specific aiming devices (PSAD) may improve precision and accuracy of glenoid component positioning in total shoulder arthroplasty, especially in degenerative glenoids. The aim of this study was to compare precision and accuracy of guide wire positioning into different glenoid models using a PSAD versus a standard guide. METHODS: Three experienced shoulder surgeons inserted 2.5 mm K-wires into polyurethane cast glenoid models of type Walch A, B and C (in total 180 models). Every surgeon placed guide wires into 10 glenoids of each type with a standard guide by DePuy Synthes in group (I) and with a PSAD in group (II). Deviation from planned version, inclination and entry point was measured, as well as investigation of a possible learning curve. RESULTS: Maximal deviation in version in B- and C-glenoids in (I) was 20.3° versus 4.8° in (II) (p < 0.001) and in inclination was 20.0° in (I) versus 3.7° in (II) (p < 0.001). For B-glenoid, more than 50% of the guide wires in (I) had a version deviation between 11.9° and 20.3° compared to ≤ 2.2° in (II) (p < 0.001). 50% of B- and C-glenoids in (I) showed a median inclination deviation of 4.6° (0.0°-20.0°; p < 0.001) versus 1.8° (0.0°-4.0°; p < 0.001) in (II). Deviation from the entry point was always less than 5.0 mm when using PSAD compared to a maximum of 7.7 mm with the standard guide and was most pronounced in type C (p < 0.001). CONCLUSION: PSAD enhance precision and accuracy of guide wire placement particularly for deformed B and C type glenoids compared to a standard guide in vitro. There was no learning curve for PSAD. However, findings of this study cannot be directly translated to the clinical reality and require further corroboration.


Subject(s)
Arthroplasty, Replacement, Shoulder , Learning Curve , Humans , Arthroplasty, Replacement, Shoulder/methods , Arthroplasty, Replacement, Shoulder/instrumentation , Bone Wires , Glenoid Cavity/surgery , Models, Anatomic , Shoulder Joint/surgery
2.
ACS Biomater Sci Eng ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839046

ABSTRACT

Vertebroplasty is a minimally invasive surgical procedure used to treat vertebral fractures, which conventionally involves injecting poly(methyl methacrylate) (PMMA) bone cement into the fractured vertebra. A common risk associated with vertebroplasty is cement leaking out of the vertebra during the injection, which may occur due to a lack of understanding of the complex flow behavior. Therefore, experiments to quantify the cement's flow properties are necessary for understanding and proper handling of the bone cement. In this study, we aimed to characterize the behavior of PMMA bone cement in its curing stages to obtain parameters that govern the flow behavior during injection. We used rotational and oscillatory rheometry for our measurements, as well as a custom-made injector setup that replicated a typical vertebroplasty setting. Our results showed that the complex viscoelastic behavior of bone cement is significantly affected by deformations and temperature. We found that the results from rotational tests, often used for characterizing the bone cement, are susceptible to measurement artifacts caused by wall slip and "ridge"-like formations in the test sample. We also found the Cox-Merz rule to be conditionally valid, which affects the use of oscillatory tests to obtain the shear-thinning characteristics of bone cement. Our findings identify important differences in the measured flow behavior of PMMA bone cement when assessed by different rheological methods, an understanding that is crucial for its risk-free usage in downstream medical applications.

3.
JSES Int ; 7(1): 98-103, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36820417

ABSTRACT

Background: Fracture classifications of the distal clavicle are based on ligamentous integrity. The influence of osseous microarchitecture on fracture occurrence, morphology, and the lesion's stability has not yet been investigated. We aimed to characterize osseous microarchitecture according to common fracture classification systems based on ligamentous integrity and investigated the possible effects of age, gender, and osteoporosis in distal clavicle fractures. Methods: N = 20 human cadaveric distal clavicles were scanned using XtremeCT with an isometric voxel size of 82 µm. In the sagittal plane, each data set was evaluated in 11 sections of approximately 7 mm thickness. Three topographic regions were defined: the bone lateral to the trapezoid (LTR), intertubercular (ITR), and medial to the conoid (MCR) ligament. Cortical bone mineral density (BMD) [mgHA/cm3] and cortical porosity (1- (BV/TV) [%]) were determined and evaluated relative to age and gender. Results: Along the mediolateral axis, there was an >20-fold increase in median cortical porosity (P ≤ .001). There were significant differences in cortical porosity between LTR and ITR (P ≤ .001) but not between ITR and MCR (P = .09). In ITR, cortical porosity was significantly greater in >60-year-old compared to younger donors (P = .01). For BMD, there was an >2-fold decrease toward the distal apex (P ≤ .001). BMD was significantly greater in ITR compared to LTR (P ≤ .001) and in MCR compared to ITR (P = .02). In ITR and MCR, clavicles of >60-year-old donors had significantly lower BMD values compared to younger donors (P < .01). Across all 3 regions, frequency distribution of low bone mass did not significantly differ between <60-year-olds and >60-year-olds (P > .6). Conclusion: The distal clavicle features a characteristic bony microarchitecture. The present study revealed a significant difference in bone quality of lateral, intertubercular, and medial zones of the distal clavicle and could specify target areas and strategies for surgical treatment of unstable fractures. Age, gender, and osteoporosis have a limited effect on bone quality and fracture genesis. In contrast, ligamentous quality is supposed to exert a substantial influence on fracture characteristics, especially in ITR. Fracture morphology of the distal clavicle is determined by a bony-ligamentous conjunction, which remains to be characterized.

4.
Biomolecules ; 12(12)2022 12 03.
Article in English | MEDLINE | ID: mdl-36551237

ABSTRACT

The internal architecture of tissue-like constructs is fundamental to their structural and biological functions. Here, we introduce a simple and robust method to fabricate cryogels based on derivatized extracellular matrix (ECM) macromolecules with porosity arranged according to the typical Benninghoff zonal architecture of articular cartilage. To obtain this arcade-like structure, the technique used the growth of ice crystals from copper pins at cryogenic temperatures. The directional cryogel formation enabled the organized growth of ice crystals over a large distance (>4 mm). The compositional properties were achieved by forming double networks (DNs) of hyaluronic acid and collagen derivatives (MeHA and CollGTA, respectively), which also served to improve the mechanical properties of the otherwise weak collagen scaffolds. Compositionally biomimetic and more resilient MeHA-CollGTA DNs (Young's modulus ≈ 200 kilopascals) were therefore produced. The technique presented expands the fabrication methods available for providing ECM macromolecules with architectural elements mimicking cartilage complexity.


Subject(s)
Cartilage, Articular , Hyaluronic Acid , Hyaluronic Acid/chemistry , Cryogels/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Freezing , Ice , Collagen
5.
Bone Joint Res ; 10(12): 820-829, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34927444

ABSTRACT

AIMS: The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). METHODS: A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability. RESULTS: The CBT could accurately be determined on XRs and highly correlated to those determined on CT scans (r = 0.87 to 0.93). The CBTavg index of the XRs significantly correlated with the BMD measured by DXA (r = 0.78) and HR-pQCT (r = 0.63), as did the CBTg index with the DXA (r = 0.55) and HR-pQCT (r = 0.64) (all p < 0.001). A high correlation of the BMD and CBT was observed between paired specimens (r = 0.79 to 0.96). The intra- and inter-rater reliability was excellent (ICC 0.79 to 0.92). CONCLUSION: The cortical index (CBTavg) at the distal radius shows a close correlation to the local BMD. It thus can serve as an initial screening tool to estimate the local bone quality if quantitative BMD measurements are unavailable, and enhance decision-making in acute settings on fracture management or further osteoporosis screening. Cite this article: Bone Joint Res 2021;10(12):820-829.

6.
Arch Osteoporos ; 16(1): 33, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594610

ABSTRACT

Cortical thickness determined at the humerus can serve as an easy and reliable screening tool to predict the local bone status when quantitative bone mineral density (BMD) measurements are not available. It can therefore serve as a rapid screening tool in fragility fractures to identify patients requiring further diagnostic or osteoporosis treatment. INTRODUCTION: Quantitative bone mineral density (BMD) of the humerus is difficult to determine but relevant for osteoporosis and fracture treatment. Dual-energy X-ray absorptiometry (DXA) of the femur and lumbar spine overestimates the humeral BMD and is not ubiquitously available. Therefore, this study evaluated whether the cortical bone thickness (CBT) of the humerus or DXA of the forearm is able to predict humeral BMD. METHODS: Humeral BMD of 54 upper cadaver extremities (22 pairs, 10 single) (19-90 years) was determined by high-resolution peripheral-quantitative-computed-tomography (HR-pQCT) (volumetric BMD (vBMD)) and DXA (areal BMD (aBMD)) of the proximal humerus and distal forearm. Average and gauge cortical bone thickness (CBTavg/ CBTg) of the humeral diaphysis was determined from standard radiographs (XR) and computed-tomography (CT) and compared to the humeral BMD. Pearson (r) and intraclass-correlation-coefficients (ICC) were used to compare results and rater-reliability. RESULTS: CBTavg from XR strongly correlated with the humeral BMD (r = 0.78 aBMD (DXA) and r = 0.64 vBMD (HR-pQCT) (p < 0.0001)). The CBTg revealed a weaker correlation (r = 0.57 aBMD and r = 0.43 vBMD). CBT derived from XR strongly correlated to those from the CT (r = 0.82-0.90) and showed an excellent intra- and inter-rater correlation (ICC 0.79-0.92). Distal forearm aBMD correlated well with the humeral aBMD (DXA) (r = 0.77) and paired specimens highly correlated to the contralateral side (humerus r = 0.89, radius r = 0.97). CONCLUSIONS: The CBTavg can reliably be determined from standard radiographs and allows a good prediction of quantitative humeral bone mineral density (aBMD or vBMD) if measurements are not available. Furthermore, the distal forearm or the contralateral humerus can serve as a side to estimate the BMD if the ipsilateral side is impaired.


Subject(s)
Bone Density , Humerus , Absorptiometry, Photon , Cortical Bone , Humans , Humerus/diagnostic imaging , Reproducibility of Results
7.
Acta Biomater ; 125: 322-332, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33631396

ABSTRACT

Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.


Subject(s)
Ink , Tissue Scaffolds , Calcium Phosphates , Printing, Three-Dimensional , Solvents , Water
8.
J Anat ; 238(3): 669-678, 2021 03.
Article in English | MEDLINE | ID: mdl-33084063

ABSTRACT

Cortical bone and its microstructure are crucial for bone strength, especially at the long bone diaphysis. However, it is still not well-defined how imaging procedures can be used as predictive tools for mechanical bone properties. This study evaluated the capability of several high-resolution imaging techniques to capture cortical bone morphology and assessed the correlation with the bone's mechanical properties. The microstructural properties (cortical thickness [Ct.Th], porosity [Ct.Po], area [Ct.Ar]) of 11 female tibial diaphysis (40-90 years) were evaluated by dual-energy X-ray absorptiometry (DXA), high-resolution peripheral-quantitative-computed-tomography (HR-pQCT), micro-CT (µCT) and histomorphometry. Stiffness and maximal torque to failure were determined by mechanical testing. T-Scores determined by DXA ranged from 0.6 to -5.6 and a lower T-Score was associated with a decrease in Ct.Th (p ≤ 0.001) while the Ct.Po (p ≤ 0.007) increased, and this relationship was independent of the imaging method. With decreasing T-Score, histology showed an increase in Ct.Po from the endosteal to the periosteal side (p = 0.001) and an exponential increase in the ratio of osteons at rest to those after remodelling. However, compared to histomorphometry, HR-pQCT and µCT underestimated Ct.Po and Ct.Th. A lower T-Score was also associated with significantly reduced stiffness (p = 0.031) and maximal torque (p = 0.006). Improving the accuracy of Ct.Po and Ct.Th did not improve prediction of the mechanical properties, which was most closely related to geometry (Ct.Ar). The ex-vivo evaluation of mechanical properties correlated with all imaging modalities, with Ct.Th and Ct.Po highly correlated with the T-Score of the tibial diaphysis. Cortical microstructural changes were underestimated with the lower resolution of HR-pQCT and µCT compared to the histological 'gold standard'. The increased accuracy did not result in an improved prediction for local bone strength in this study, which however might be related to the limited number of specimens and thus needs to be evaluated in a larger collective.


Subject(s)
Cortical Bone/diagnostic imaging , Tibia/diagnostic imaging , Absorptiometry, Photon , Aged , Aged, 80 and over , Bone Density , Diaphyses/diagnostic imaging , Female , Humans , Middle Aged , X-Ray Microtomography
9.
Materials (Basel) ; 13(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105759

ABSTRACT

Hydroxyapatite (HA) coatings have become very popular in uncemented total hip arthroplasty (THA). Analysis of retrievals and tissue samples from an HA-coated femoral stem, which failed within 14 months after THA, provides exceptional insights into the failure mechanism, as well as the process of osteointegration of such an implant. METHODS: Retrievals were photo-documented. Samples were examined by micro-computed tomography, X-ray diffraction (XRD) and embedded in polymethylmethacrylate for histology. RESULTS: The coating had partially delaminated. The sandblasted surface of the stem was partially polished by the delaminated HA coating, indicating failure before revision. In the tissue samples, the HA coating was well integrated by newly formed bone trabeculae. No adverse biological reaction was observed. XRD analysis showed that residues of the HA coating were still present and could clearly be differentiated from the surrounding bone. Preferential orientation of the HA crystallites could be identified within the newly formed bone, representing a potential mechanical weakness induced either by physiologic strain or by the coating. CONCLUSION: current HA coatings, relatively thick and made of high crystallinity HA, may be prone to delamination, as also seen in our study. Recent efforts have aimed towards thinner (<1 µm) coatings with nanocrystalline HA structures that possibly relate to lower delamination risks. However, the question arises if HA coatings are beneficial since sandblasted non-coated stems offer similar results without the risk of delamination. XRD not only permits differentiation between the HA from the coating and the HA of the ongrown bone, it also provides new insights into the microstructure of this newly formed bone.

10.
Sci Rep ; 10(1): 9141, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499489

ABSTRACT

Bone replacement and osteosynthesis require materials which can at least temporarily bear high mechanical loads. Ideally, these materials would eventually degrade and would be replaced by bone deposited from the host organism. To date several metals, notably iron and iron-based alloys have been identified as suitable materials because they combine high strength at medium corrosion rates. However, currently, these materials do not degrade within an appropriate amount of time. Therefore, the aim of the present study is the development of an iron-based degradable sponge-like (i.e. cellular) implant for bone replacement with biomechanically tailored properties. We used a metal powder sintering approach to manufacture a cylindrical cellular implant which in addition contains phosphor as an alloying element. No corrosion inhibiting effects of phosphorus have been found, the degradation rate was not altered. Implant prototypes were tested in an animal model. Bone reaction was investigated at the bone-implant-interface and inside the cellular spaces of the implant. Newly formed bone was growing into the cellular spaces of the implant after 12 months. Signs of implant degradation were detected but after 12 months, no complete degradation could be observed. In conclusion, iron-based open-porous cellular biomaterials seem promising candidates for the development of self-degrading and high load bearing bone replacement materials.


Subject(s)
Absorbable Implants , Iron/chemistry , Materials Testing , Alloys/chemistry , Animals , Bone Diseases/pathology , Bone Diseases/therapy , Bone Diseases/veterinary , Bone Substitutes/chemistry , Bone Substitutes/therapeutic use , Bone and Bones/pathology , Female , Porosity , Sheep
11.
Dent Mater ; 36(3): 402-412, 2020 03.
Article in English | MEDLINE | ID: mdl-31992485

ABSTRACT

OBJECTIVE: Titanium (Ti)- and Zirconia (ZrO2)-implants in mini pig maxillae were compared with respect to Ti/zirconium (Zr) release into the surrounding bone tissues, the resulting short term tissue responses and the potential toxicity. METHODS: Ti/Zr release from Ti- and ZrO2-implants in mini pig maxillae was determined with inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). The spatial distribution of Ti and Zr in maxilla tissues near the implant surface was assessed with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A histological analysis was performed to investigate the tissue responses after 12 weeks of implantation. The cytotoxicity and DNA damage of Ti particles and ZrO2 particles were studied with XTT and Comet assay. RESULTS: The mean Ti content in the bone adjacent to Ti-implants was 1.67 mg/kg-bone weight. The highest Ti content detected was 2.17 mg/kg-bone weight. The mean Zr content in the bone adjected to ZrO2-implants was 0.59 mg/kg-bone weight. The highest Zr content was 0.75 mg/kg-bone weight. The spatial distribution of the Ti and Zr in bone showed mainly a higher intensity of Ti and Zr close to the screw thread outer tip rather. Histological analysis indicated that near both implant-types signs of bone marrow fibrosis were present. EC50 of commercially available ZrO2-nanoparticles (NPs, <100 nm) and ZrO2-microparticles (MPs, <5 µm) was 13.96 mg/ml and 80.99 mg/ml, respectively. ZrO2-NPs and ZrO2-MPs can induce DNA damage at 70 µg/ml and 810 µg/ml, respectively. SIGNIFICANCE: After 12-weeks of implantation, increased concentrations of Ti and Zr can be detected in bone/tissues near Ti- and ZrO2-implants in mini pig maxillae. Ti content released from Ti-implants is two times higher than the Zr content released from ZrO2-implants. ZrO2-NPs showed lower cytotoxicity and DNA damage compared to results reported for Ti-NPs in human cells.


Subject(s)
Dental Implants , Zirconium , Animals , Humans , Maxilla , Surface Properties , Swine , Swine, Miniature , Titanium
12.
Biomaterials ; 233: 119721, 2020 03.
Article in English | MEDLINE | ID: mdl-31954958

ABSTRACT

The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients' OF anatomy with better fidelity. As alternative to titanium mesh implants dedicated to OF repair, we propose a flexible patient-specific implant (PSI) made by stereolithography (SLA), offering a high degree of control over its geometry and architecture. The PSI is made of biodegradable poly(trimethylene carbonate) (PTMC) loaded with 40 wt % of hydroxyapatite (called Osteo-PTMC). In this work, we developed a complete work-flow for the additive manufacturing of PSIs to be used to repair the fractured OF, which is clinically relevant for individualized medicine. This work-flow consists of (i) the surgical planning, (ii) the design of virtual PSIs and (iii) their fabrication by SLA, (iv) the monitoring and (v) the biological evaluation in a preclinical large-animal model. We have found that once implanted, titanium meshes resulted in fibrous tissue encapsulation, whereas Osteo-PMTC resulted in rapid neovascularization and bone morphogenesis, both ectopically and in the OF region, and without the need of additional biotherapeutics such as bone morphogenic proteins. Our study supports the hypothesis that the composite osteoinductive Osteo-PTMC brings advantages compared to standard titanium mesh, by stimulating bone neoformation in the OF defects. PSIs made of Osteo-PTMC represent a significant advancement for patients whereby the anatomical characteristics of the OF defect restrict the utilization of traditional hand-shaped titanium mesh.


Subject(s)
Plastic Surgery Procedures , Stereolithography , Animals , Durapatite , Humans , Orbit , Prostheses and Implants , Surgical Mesh , Titanium
13.
PLoS One ; 14(2): e0210402, 2019.
Article in English | MEDLINE | ID: mdl-30707699

ABSTRACT

Orthopedic device-related infection (ODRI) is a potentially devastating complication arising from the colonization of the device with bacteria, such as Staphylococcus aureus. The aim of this study was to determine if intraoperative loading of a clinically approved calcium phosphate (CaP) coating with gentamicin can protect from ODRI in vivo. First, CaP-coated titanium aluminium niobium (TAN) discs were used to investigate the adsorption and release kinetics of gentamicin in vitro. Gentamicin loading and subsequent release from the coating were both rapid, with maximum loading occurring following one second of immersion, and >95% gentamicin released within 15 min in aqueous solution, respectively. Second, efficacy of the gentamicin-loaded CaP coating for preventing ODRI in vivo was investigated using a CaP-coated unicortical TAN screw implanted into the proximal tibia of skeletally mature female Wistar rats, following inoculation of the implant site with S. aureus. Gentamicin-loading prevented ODRI in 7/8 animals, whereas 9/9 of the non-gentamicin treated animals were infected after 7 days. In conclusion, gentamicin can be rapidly and simply loaded onto, and released from, CaP-based implant coatings, and this is an effective strategy for preventing peri-operative S. aureus-induced ODRI in vivo.


Subject(s)
Calcium Phosphates/pharmacology , Coated Materials, Biocompatible/pharmacology , Gentamicins/pharmacology , Intraoperative Care , Staphylococcal Infections/prevention & control , Staphylococcus aureus/growth & development , Alloys/pharmacology , Animals , Bone Screws , Female , Niobium/pharmacology , Rats , Rats, Wistar , Tibia/metabolism , Tibia/microbiology , Tibia/pathology
14.
J Biomed Mater Res B Appl Biomater ; 106(8): 2924-2931, 2018 11.
Article in English | MEDLINE | ID: mdl-30199602

ABSTRACT

Infection associated with an implant is a complication feared in surgery, as it leads to loosening and dysfunction. This report documents an unexpected good bony integration of a porous tantalum shoulder prosthesis despite infection. A shoulder prosthesis with a porous tantalum glenoidal base plate was retrieved after 3 years of ongoing infection with Staphylococcus spp. Methyl-methacrylate embedded sections of the retrieved glenoidal component were analyzed by optical and scanning electron beam microscopy (SEM). Bone ongrowth and ingrowth were quantified. Bone had formed at the implant surface and within the open cell structure of the porous tantalum. The bone implant contact index was 32%. The bone ingrowth or relative bone area within the open structure was 8.2%, respectively 11.9% in the outer 50% of the thickness. Due to the section thickness, bone ongrowth could best be documented in SEM. Despite long-lasting and ongoing infection, the glenoidal base plate of the prosthesis showed good bony integration upon removal. The bone ingrowth into the porous tantalum was comparable to the values previously reported for the undersurface of retrieved proximal humerus resurfacing implants. Good integration of the implant however did not solve the problem of infection, and related morbidity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2924-2931, 2018.


Subject(s)
Bone-Implant Interface , Prostheses and Implants/adverse effects , Shoulder Prosthesis/adverse effects , Staphylococcal Infections , Staphylococcus , Aged , Bone-Implant Interface/microbiology , Bone-Implant Interface/pathology , Female , Glenoid Cavity/microbiology , Glenoid Cavity/pathology , Humans , Humerus/microbiology , Humerus/pathology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Titanium
15.
Am J Vet Res ; 79(9): 970-979, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30153050

ABSTRACT

OBJECTIVE To evaluate and compare surface and cross-sectional structure as well as localized electrochemical corrosion and ion release for cast stainless steel (SS) tibia plateau leveling osteotomy (TPLO) plates retrieved from dogs with and without osteosarcoma (OSA) and to compare these findings with similar variables for forged SS TPLO plates retrieved from dogs. SAMPLE 47 TPLO plates explanted from 45 client-owned dogs (22 cast plates from dogs with OSA, 22 cast plates from dogs without OSA, and 3 forged plates from dogs without OSA). PROCEDURES Histologic evaluations of tissue samples collected from implant sites at the time of plate retrieval were performed to confirm implant site tumor status of each dog. Surfaces and metallographic cross sections of retrieved plates were examined, and the microcell technique was used to obtain local electrochemical corrosion and ion release measurements. RESULTS Findings indicated that all cast SS plates demonstrated high spatial variability of their electrochemical surface properties and inhomogeneous superficial and cross-sectional composition, compared with forged plates. Greater metal ion release was observed in cast plates than in forged plates and in cast plates from dogs with OSA than in cast or forged from dogs without OSA. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that accumulation of metal ions from implants could be a trigger for neoplastic transformation in neighboring cells. Metal ion release caused by corrosion of implants that do not comply with recommended standards of the American Society for Testing and Materials International or the International Organization for Standardization could potentially place patients at increased risk of tumor development.


Subject(s)
Bone Neoplasms/veterinary , Bone Plates/veterinary , Dog Diseases/pathology , Osteosarcoma/veterinary , Osteotomy/veterinary , Animals , Corrosion , Cross-Sectional Studies , Dogs , Electrochemical Techniques , Male , Materials Testing , Osteotomy/methods , Retrospective Studies , Stainless Steel , Surface Properties , Tibia/surgery
16.
J Tissue Eng Regen Med ; 12(2): 321-329, 2018 02.
Article in English | MEDLINE | ID: mdl-28486746

ABSTRACT

The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three-dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε-caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering.


Subject(s)
Collagen/pharmacology , Polyesters/pharmacology , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line, Tumor , Humans , Rats , Tensile Strength , X-Ray Microtomography
17.
Mediators Inflamm ; 2017: 1075975, 2017.
Article in English | MEDLINE | ID: mdl-28845088

ABSTRACT

Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.


Subject(s)
Human Umbilical Vein Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Platelet-Rich Plasma/cytology , Cell Survival , Humans , Neovascularization, Physiologic/physiology , Tissue Engineering
18.
Calcif Tissue Int ; 101(3): 271-279, 2017 09.
Article in English | MEDLINE | ID: mdl-28432379

ABSTRACT

Fractures of the proximal humerus are highly related to age and osteoporotic bone remodeling. Previous studies have highlighted the cortex as a major side of the bone loss, but the microstructural changes of the humerus have not been evaluated entirely. Sixty-four (n = 64) humeri of a representative collective (18-100 years) were scanned with high-resolution peripheral quantitative computed tomography (82 µm). Bone mineral density (BMD), trabecular bone volume fraction (Tb.BV/TV), cortical thickness (Ct.Th), and cortical porosity (Ct.Po) were determined with respect to four age groups. The BMD (r = -0.42), Ct.Th (r = 0.57), and Tb.BV/TV (r = 0.68) showed an age group-related decrease, while the Ct.Po increased (r = -0.55). The oldest group (80-100 years) revealed an extensively higher Ct.Po of +87% compared to the youngest group (18-44 years), while the Ct.Th and Tb.BV/TV were significantly lower by -35 and -49% (p < 0.05). The main cortical bone loss occurred after 65 years with the Ct.Th (-34%) and Tb.BV/TV (-40%) being clearly lower and the Ct.Po (+93%) clearly higher compared to the youngest group. In summary, osteoporosis leads to an age-related higher Ct.Po and reduced Ct.Th at the humeral cortex of the surgical neck. The bone loss of the cortex predominantly occurs around the age of 65 years and is very likely to reduce the mechanical strength and highly increases the fracture risk.


Subject(s)
Aging/pathology , Bone Density , Cortical Bone/pathology , Humerus/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Cadaver , Cortical Bone/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Humerus/diagnostic imaging , Male , Middle Aged , Porosity , Tomography, X-Ray Computed , Young Adult
19.
J Orthop Translat ; 8: 40-48, 2017 Jan.
Article in English | MEDLINE | ID: mdl-30035093

ABSTRACT

BACKGROUND: One of the most serious adverse events potentially occurring during vertebroplasty is cement leakage. Associated risks for the patient could be reduced if cement filling is preoperatively planned. This requires a better understanding of cement flow behaviour. Therefore, the aim of the present study was to investigate bone cement distribution in artificial inhomogeneous cancellous bone structures during a simulated stepwise injection procedure. METHODS: Four differently coloured 1-mL cement portions were injected stepwise into six open-porous aluminum foam models with simulated leakage paths. Each model was subsequently cross-sectioned and high-resolution pictures were taken, followed by anatomical site allocation based on the assumption about a posterior insertion of the cannula. A radial grid consisting of 36 equidistant beams (0°-350°) was applied to evaluate the cement flow along each beam by measuring the radial length of each cement portion (total length) and of all four portions together (distance to border). Independently from the injection measurements, the viscosity of 20 cement portions was measured at time points corresponding to the start of the first and the end of the last injection. RESULTS: Despite some diffuse colour transitions at the borderlines, no interfusion between the differently coloured cement portions was observed. The two highest values for total length of each of the first three injected cement portions and for distance to border were indicated in directions anterior bilateral to the cannula along the 120°, 240° and 250° beams and posterolateral along the 60° beam. The two highest total lengths for the fourth cement portion were registered in the direction of the cannula along the 170° and 180° beams. Standard deviations of total length for each of the last three injected portions and for distance to border were with two highest values in directions anterior bilateral to the cannula along the 120°, 150°, 240° and 250° beams and opposite to the direction of the cannula along the 10° beam. The two highest values for the first cement portion were registered posterior bilateral to the cannula along the 70° and 350° beams. The values for averaged standard deviations of the total length of the fourth cement portion and the distance to border were significantly higher in comparison to the first cement portion (p ≤ 0.020). Dynamic viscosity at the start of the first injection was 343 ± 108 Pa∙s and increased to 659 ± 208 Pa∙s at the end of the fourth injection. CONCLUSION: The simulated leakage path seemed to be the most important adverse injection factor influencing the uniformity of cement distribution. Another adverse factor causing dispersion of this distribution was represented by the simulated bone marrow. However, the rather uniform distribution of the totally injected cement amount, considered as one unit, could be ascribed to the medium viscosity of the used cement. Finally, with its short waiting time of 45 s, the stepwise injection procedure was shown to be ineffective in preventing cement leakage.

20.
Arch Orthop Trauma Surg ; 136(9): 1331-1335, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27450194

ABSTRACT

INTRODUCTION: Primary press fit and secondary osteointegration is a precondition for component anchoring in articular surface replacements, also in the case of proximal interphalangeal (PIP) joint. Nevertheless, many existing prostheses for the PIP joint have failed to show sufficient osteointegration. CapFlex-PIP(©) implant is a modular metal-polyethylene surface replacement for the PIP joint consisting of a proximal and distal component each having a titanium pore backside, which allows secondary osteointegration at the bone-implant interface. To evaluate osseous integration of this implant, we report a histological analysis of an explantation of a CapFlex-PIP(©) finger implant. CASE PRESENTATION: We present a case of a removed CapFlex-PIP(©) implant due to a soft tissue complication in an 84-year-old woman. The patient received bisphosphonate medication as treatment for osteoporosis. For the histological analysis, the bone-implant contact (BIC) was measured on all stained sections using a Zeiss Axioplan microscope. The summated BIC was 40.7 % for the proximal component and 46.5 % for the distal component of the implant. Histology showed that the implant was in direct contact with the bone at various locations, with no signs of wear or degradation. CONCLUSIONS: This case demonstrates successful osteointegration of the CapFlex-PIP(©) implant. Both components of the investigated implant show osseous integration to an extent which is comparable to that of other load-bearing and articulating implants at different locations in the human body.


Subject(s)
Arthroplasty, Replacement, Finger , Finger Joint/surgery , Joint Prosthesis , Osseointegration , Aged, 80 and over , Female , Humans , Osteoarthritis/surgery , Polyethylene , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...