Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 20(12): 2446-2456, 2021 12.
Article in English | MEDLINE | ID: mdl-34625502

ABSTRACT

NTRK chromosomal rearrangements yield oncogenic TRK fusion proteins that are sensitive to TRK inhibitors (larotrectinib and entrectinib) but often mutate, limiting the durability of response for NTRK + patients. Next-generation inhibitors with compact macrocyclic structures (repotrectinib and selitrectinib) were designed to avoid resistance mutations. Head-to-head potency comparisons of TRK inhibitors and molecular characterization of binding interactions are incomplete, obscuring a detailed understanding of how molecular characteristics translate to potency. Larotrectinib, entrectinib, selitrectinib, and repotrectinib were characterized using cellular models of wild-type TRKA/B/C fusions and resistance mutant variants with a subset evaluated in xenograft tumor models. Crystal structures were determined for repotrectinib bound to TRKA (wild-type, solvent-front mutant). TKI-naïve and pretreated case studies are presented. Repotrectinib was the most potent inhibitor of wild-type TRKA/B/C fusions and was more potent than selitrectinib against all tested resistance mutations, underscoring the importance of distinct features of the macrocycle structures. Cocrystal structures of repotrectinib with wild-type TRKA and the TRKAG595R SFM variant elucidated how differences in macrocyclic inhibitor structure, binding orientation, and conformational flexibility affect potency and mutant selectivity. The SFM crystal structure revealed an unexpected intramolecular arginine sidechain interaction. Repotrectinib caused tumor regression in LMNA-NTRK1 xenograft models harboring GKM, SFM, xDFG, and GKM + SFM compound mutations. Durable responses were observed in TKI-naïve and -pretreated patients with NTRK + cancers treated with repotrectinib (NCT03093116). This comprehensive analysis of first- and second-generation TRK inhibitors informs the clinical utility, structural determinants of inhibitor potency, and design of new generations of macrocyclic inhibitors.


Subject(s)
Macrocyclic Compounds/therapeutic use , Oncogene Proteins, Fusion/therapeutic use , Pyrazoles/therapeutic use , Humans , Macrocyclic Compounds/pharmacology , Models, Molecular , Mutation , Neoplasms/drug therapy , Oncogene Proteins, Fusion/pharmacology , Pyrazoles/pharmacology
2.
Bioorg Med Chem Lett ; 47: 128111, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34353608

ABSTRACT

Flavaglines such as silvestrol (1) and rocaglamide (2) constitute an interesting class of natural products with promising anticancer activities. Their mode of action is based on inhibition of eukaryotic initiation factor 4A (eIF4A) dependent translation through formation of a stable ternary complex with eIF4A and mRNA, thus blocking ribosome scanning. Herein we describe initial SAR studies in a novel series of 1-aminomethyl substituted flavagline-inspired eIF4A inhibitors. We discovered that a variety of N-substitutions at the 1-aminomethyl group are tolerated, making this position pertinent for property and ADME profile tuning. The findings presented herein are relevant to future drug design efforts towards novel eIF4A inhibitors with drug-like properties.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Biological Products/pharmacology , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Triterpenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Eukaryotic Initiation Factor-4A/metabolism , Humans , Molecular Structure , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry
3.
Mol Cancer Ther ; 20(1): 26-36, 2021 01.
Article in English | MEDLINE | ID: mdl-33037136

ABSTRACT

The PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5'-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant in vivo efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration. Evaluation of predictive markers of sensitivity or resistance has shown that activation of eIF4A, mediated by mTOR signaling, correlated with eFT226 sensitivity in in vivo xenograft models. Mutation of PTEN is associated with reduced apoptosis in vitro and diminished efficacy in vivo in response to eFT226. In models evaluated with PTEN loss, AKT was stimulated without a corresponding increase in mTOR activation. AKT activation leads to the degradation of PDCD4, which can alter eIF4F complex formation. The association of eFT226 activity with PTEN/PI3K/mTOR pathway regulation of mRNA translation provides a means to identify patient subsets during clinical development.


Subject(s)
Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Oncogenes , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Eukaryotic Initiation Factor-4A/metabolism , Female , Humans , Mice, Inbred NOD , Mice, SCID , PTEN Phosphohydrolase/metabolism , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
4.
Org Lett ; 22(16): 6257-6261, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806219

ABSTRACT

Rocaglates, rocaglamides, and related flavagline natural products exert their remarkable anticancer activity through inhibition of eukaryotic initiation factor 4A (eIF4A) but generally display suboptimal drug-like properties. In our efforts to identify potent drug-like eIF4A inhibitors, we developed synthetic strategies for diastereoselectively functionalizing the C1 position of aza-rocaglamide scaffolds (cf. 14 and 18), which proceed via retention or inversion of configuration at C1 depending on the C2 substituent (cf. 15 and 21) and ultimately enabled the discovery of novel and potent eIF4A inhibitors such as 25.


Subject(s)
Benzofurans/chemistry , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Binding Sites , Biological Products , Eukaryotic Initiation Factor-4A/metabolism , Humans , Molecular Structure
5.
J Med Chem ; 63(11): 5879-5955, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32470302

ABSTRACT

Dysregulation of protein translation is a key driver for the pathogenesis of many cancers. Eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase, is a critical component of the eIF4F complex, which regulates cap-dependent protein synthesis. The flavagline class of natural products (i.e., rocaglamide A) has been shown to inhibit protein synthesis by stabilizing a translation-incompetent complex for select messenger RNAs (mRNAs) with eIF4A. Despite showing promising anticancer phenotypes, the development of flavagline derivatives as therapeutic agents has been hampered because of poor drug-like properties as well as synthetic complexity. A focused effort was undertaken utilizing a ligand-based design strategy to identify a chemotype with optimized physicochemical properties. Also, detailed mechanistic studies were undertaken to further elucidate mRNA sequence selectivity, key regulated target genes, and the associated antitumor phenotype. This work led to the design of eFT226 (Zotatifin), a compound with excellent physicochemical properties and significant antitumor activity that supports clinical development.


Subject(s)
Benzofurans/chemistry , Drug Design , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Animals , Benzofurans/pharmacokinetics , Benzofurans/therapeutic use , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Female , Half-Life , Humans , Ligands , Mice , Mice, Nude , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Structure, Tertiary , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Rats , Structure-Activity Relationship
6.
J Med Chem ; 61(8): 3516-3540, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29526098

ABSTRACT

Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound 23 (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone-aminal structure described for the first time in the kinase literature. Compound 23 has potent in vivo antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound 23 is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound 23 is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically.


Subject(s)
Antineoplastic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/therapeutic use , Pyridones/therapeutic use , Pyrimidines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Drug Design , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridones/chemical synthesis , Pyridones/chemistry , Pyridones/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Serine/chemistry , Signal Transduction/drug effects , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 8(12): 3181-90, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19934279

ABSTRACT

The MET receptor tyrosine kinase has emerged as an important target for the development of novel cancer therapeutics. Activation of MET by mutation or gene amplification has been linked to kidney, gastric, and lung cancers. In other cancers, such as glioblastoma, autocrine activation of MET has been demonstrated. Several classes of ATP-competitive inhibitor have been described, which inhibit MET but also other kinases. Here, we describe SGX523, a novel, ATP-competitive kinase inhibitor remarkable for its exquisite selectivity for MET. SGX523 potently inhibited MET with an IC50 of 4 nmol/L and is >1,000-fold selective versus the >200-fold selectivity of other protein kinases tested in biochemical assays. Crystallographic study revealed that SGX523 stabilizes MET in a unique inactive conformation that is inaccessible to other protein kinases, suggesting an explanation for the selectivity. SGX523 inhibited MET-mediated signaling, cell proliferation, and cell migration at nanomolar concentrations but had no effect on signaling dependent on other protein kinases, including the closely related RON, even at micromolar concentrations. SGX523 inhibition of MET in vivo was associated with the dose-dependent inhibition of growth of tumor xenografts derived from human glioblastoma and lung and gastric cancers, confirming the dependence of these tumors on MET catalytic activity. Our results show that SGX523 is the most selective inhibitor of MET catalytic activity described to date and is thus a useful tool to investigate the role of MET kinase in cancer without the confounding effects of promiscuous protein kinase inhibition.


Subject(s)
Adenosine Triphosphate/pharmacology , Neoplasms/prevention & control , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridazines/pharmacology , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Animals , Catalysis/drug effects , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Female , Humans , Kinetics , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Pyridazines/chemistry , Triazoles/chemistry , Tumor Burden/drug effects
8.
Bioorg Med Chem Lett ; 19(1): 279-82, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19019674

ABSTRACT

Fragment-based hit identification coupled with crystallographically enabled structure-based drug design was used to design potent inhibitors of JAK-2. After two iterations from fragment 1, we were able to increase potency by greater than 500-fold to provide sulfonamide 13, a 78-nM JAK-2 inhibitor.


Subject(s)
Drug Discovery/methods , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries , Crystallography, X-Ray , Drug Design , Humans , Janus Kinase 2/chemistry , Models, Molecular , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
11.
Bioorg Med Chem Lett ; 16(17): 4554-8, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16784854

ABSTRACT

As a continuation of our efforts to discover novel apoptosis inducers as anticancer agents using a cell-based caspase HTS assay, 2-phenyl-oxazole-4-carboxamide derivatives were identified. The structure-activity relationships of this class of molecules were explored. Compound 1k, with EC(50) of 270 nM and GI(50) of 229 nM in human colorectal DLD-1 cells, was selected and demonstrated the ability to cleave PARP and displayed DNA laddering, the hallmarks of apoptosis. Compound 1k showed 63% tumor growth inhibition in human colorectal DLD-1 xenograft mouse model at 50 mpk, bid.


Subject(s)
Amides/chemistry , Amides/pharmacology , Apoptosis/drug effects , Oxazoles/chemistry , Oxazoles/pharmacology , Amides/chemical synthesis , Animals , Cell Line, Tumor , Female , Humans , Mice , Molecular Structure , Oxazoles/chemical synthesis , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
Biochemistry ; 45(19): 5964-73, 2006 May 16.
Article in English | MEDLINE | ID: mdl-16681368

ABSTRACT

Improved peptide-based inhibitors of human beta tryptase were discovered using information gleaned from tripeptide library screening and structure-guided design methods, including fragment screening. Our efforts sought to improve this class of inhibitors by replacing the traditional Lys or Arg P1 element. The optimized compounds display low nanomolar potency against the mast cell target and several hundred-fold selectivity with respect to serine protease off targets. Thus, replacement of Lys/Arg at P1 in a peptide-like scaffold does not need to be accompanied by a loss in target affinity.


Subject(s)
Serine Endopeptidases/drug effects , Serine Proteinase Inhibitors/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Serine Proteinase Inhibitors/pharmacology , Tryptases
13.
14.
Bioorg Med Chem Lett ; 16(15): 4036-40, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16714109

ABSTRACT

A series of novel alpha-keto-[1,2,4]-oxadiazoles has been synthesized as human tryptase inhibitors for evaluation as a new class of anti-asthmatic agent. The inhibitor design is focused on using a prime-side hydrophobic pocket and the S2 pocket of beta-tryptase to achieve inhibition potency and selectivity over other serine proteases.


Subject(s)
Oxazoles/pharmacology , Serine Endopeptidases/drug effects , Crystallography, X-Ray , Humans , Kinetics , Oxazoles/chemistry , Tryptases
15.
Bioorg Med Chem Lett ; 16(15): 4085-9, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16725321

ABSTRACT

The synthesis of novel [1,2,4]oxadiazoles and their structure-activity relationship (SAR) for the inhibition of tryptase and related serine proteases is presented. Elaboration of the P'-side afforded potent, selective, and orally bioavailable tryptase inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Serine Endopeptidases/drug effects , Administration, Oral , Biological Availability , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Models, Molecular , Structure-Activity Relationship , Tryptases
17.
Bioorg Med Chem Lett ; 16(10): 2796-9, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16487703

ABSTRACT

Synthesis and biological data of a novel selective and efficacious factor IXa inhibitor are described along with its crystal structure in factor VIIa.


Subject(s)
Factor IXa/antagonists & inhibitors , Pyrazoles/pharmacology , Serine Proteinase Inhibitors/pharmacology , Factor IXa/chemistry , Humans , Models, Molecular
18.
Bioorg Med Chem Lett ; 16(8): 2270-3, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16460932

ABSTRACT

Structure-activity relationships and binding mode of novel heterocyclic factor VIIa inhibitors will be described. In these inhibitors, a highly basic 5-amidinoindole moiety has been successfully replaced with a less basic 5-aminopyrrolo[3,2-b]pyridine scaffold.


Subject(s)
Aminopyridines/chemistry , Factor VIIa/antagonists & inhibitors , Fibrinolytic Agents/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Thromboplastin/antagonists & inhibitors , Aminopyridines/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Design , Fibrinolytic Agents/pharmacology , Heterocyclic Compounds/pharmacology , Humans , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 16(8): 2243-6, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16455251

ABSTRACT

Efforts to improve the potency and pharmacokinetic properties of small molecule factor VIIa inhibitors are described. Small structural modifications to existing leads allow the modulation of half-life and clearance, potentially making these compounds suitable candidates for drug development.


Subject(s)
Anticoagulants/pharmacokinetics , Blood Coagulation/drug effects , Factor VIIa/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacokinetics , Animals , Drug Design , Half-Life , Humans , Molecular Structure , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 16(7): 2037-41, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16412633

ABSTRACT

Highly selective and potent factor VIIa-tissue factor (fVIIa.TF) complex inhibitors were generated through structure-based design. The pharmacokinetic properties of an optimized analog (9) were characterized in several preclinical species, demonstrating pharmacokinetic characteristics suitable for once-a-day dosing in humans. Analog 9 inhibited platelet and fibrin deposition in a dose-dependent manner after intravenous administration in a baboon thrombosis model, and a pharmacodynamic concentration-response model was developed to describe the platelet deposition data. Results for heparin and enoxaparin (Lovenox) in the baboon model are also presented.


Subject(s)
Factor VIIa/antagonists & inhibitors , Models, Animal , Serine Proteinase Inhibitors/pharmacology , Thrombosis/drug therapy , Animals , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Models, Molecular , Papio , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacokinetics , Serine Proteinase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...