Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 1072772, 2022.
Article in English | MEDLINE | ID: mdl-36605547

ABSTRACT

Melatonin is a transducer of photic environmental information and participates in the synchronization of various physiological and behavioral phenomena. Melatonin can act directly in several areas of the central nervous system through its membrane receptors coupled to G protein, called MT1 and MT2 receptors. In some structures, such as the retina, hypothalamus and pars tuberalis, the expression of both melatonin receptors shows circadian variations. Melatonin can act in the synchronization of the clock proteins rhythm in these areas. Using the immunohistochemistry technique, we detected the immunoexpression of the melatonin receptors and clock genes clock protein Per1 in the inferior olivary nucleus (ION) of the Sapajus apella monkey at specific times of the light-dark phase. The mapping performed by immunohistochemistry showed expressive immunoreactivity (IR) Per1 with predominance during daytime. Both melatonin receptors were expressed in the ION without a day/night difference. The presence of both melatonin receptors and the Per1 protein in the inferior olivary nucleus can indicate a functional role not only in physiological, as in sleep, anxiety, and circadian rhythm, but also a chronobiotic role in motor control mechanisms.

2.
Pharmaceutics ; 13(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069254

ABSTRACT

Cobalt-base alloys (Co-Cr-Mo) are widely employed in dentistry and orthopedic implants due to their biocompatibility, high mechanical strength and wear resistance. The osseointegration of implants can be improved by surface modification techniques. However, complex geometries obtained by additive manufacturing (AM) limits the efficiency of mechanical-based surface modification techniques. Therefore, plasma immersion ion implantation (PIII) is the best alternative, creating nanotopography even in complex structures. In the present study, we report the osseointegration results in three conditions of the additively manufactured Co-Cr-Mo alloy: (i) as-built, (ii) after PIII, and (iii) coated with titanium (Ti) followed by PIII. The metallic samples were designed with a solid half and a porous half to observe the bone ingrowth in different surfaces. Our results revealed that all conditions presented cortical bone formation. The titanium-coated sample exhibited the best biomechanical results, which was attributed to the higher bone ingrowth percentage with almost all medullary canals filled with neoformed bone and the pores of the implant filled and surrounded by bone ingrowth. It was concluded that the metal alloys produced for AM are biocompatible and stimulate bone neoformation, especially when the Co-28Cr-6Mo alloy with a Ti-coated surface, nanostructured and anodized by PIII is used, whose technology has been shown to increase the osseointegration capacity of this implant.

SELECTION OF CITATIONS
SEARCH DETAIL
...