Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(36): e2203071, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841137

ABSTRACT

Charge-transfer phenomena at heterointerfaces are a promising pathway to engineer functionalities absent in bulk materials but can also lead to degraded properties in ultrathin films. Mitigating such undesired effects with an interlayer reshapes the interface architecture, restricting its operability. Therefore, developing less-invasive methods to control charge transfer will be beneficial. Here, an appropriate top-interface design allows for remote manipulation of the charge configuration of the buried interface and concurrent restoration of the ferromagnetic trait of the whole film. Double-perovskite insulating ferromagnetic La2 NiMnO6 (LNMO) thin films grown on perovskite oxide substrates are investigated as a model system. An oxygen-vacancy-assisted electronic reconstruction takes place initially at the LNMO polar interfaces. As a result, the magnetic properties of 2-5 unit cell LNMO films are affected beyond dimensionality effects. The introduction of a top electron-acceptor layer redistributes the electron excess and restores the ferromagnetic properties of the ultrathin LNMO films. Such a strategy can be extended to other interfaces and provides an advanced approach to fine-tune the electronic features of complex multilayered heterostructures.

2.
Small ; 16(41): e2003224, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32939986

ABSTRACT

Memristive devices are among the most prominent candidates for future computer memory storage and neuromorphic computing. Though promising, the major hurdle for their industrial fabrication is their device-to-device and cycle-to-cycle variability. These occur due to the random nature of nanoionic conductive filaments, whose rupture and formation govern device operation. Changes in filament location, shape, and chemical composition cause cycle-to-cycle variability. This challenge is tackled by spatially confining conductive filaments with Ni nanoparticles. Ni nanoparticles are integrated on the bottom La0.2 Sr0.7 Ti0.9 Ni0.1 O3- δ electrode by an exsolution method, in which, at high temperatures under reducing conditions, Ni cations migrate to the perovskite surface, generating metallic nanoparticles. This fabrication method offers fine control over particle size and density and ensures strong particle anchorage in the bottom electrode, preventing movement and agglomeration. In devices based on amorphous SrTiO3 , it is demonstrated that as the exsolved Ni nanoparticle diameter increases up to ≈50 nm, the ratio between the ON and OFF resistance states increases from single units to 180 and the variability of the low resistance state reaches values below 5%. Exsolution is applied for the first time to engineer solid-solid interfaces extending its realm of application to electronic devices.

3.
Transl Psychiatry ; 9(1): 230, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530798

ABSTRACT

Schizophrenia, Schizoaffective, and Bipolar disorders share behavioral and phenomenological traits, intermediate phenotypes, and some associated genetic loci with pleiotropic effects. Volumetric abnormalities in brain structures are among the intermediate phenotypes consistently reported associated with these disorders. In order to examine the genetic underpinnings of these structural brain modifications, we performed genome-wide association analyses (GWAS) on 60 quantitative structural brain MRI phenotypes in a sample of 777 subjects (483 cases and 294 controls pooled together). Genotyping was performed with the Illumina PsychChip microarray, followed by imputation to the 1000 genomes multiethnic reference panel. Enlargement of the Temporal Horns of Lateral Ventricles (THLV) is associated with an intronic SNP of the gene NRXN1 (rs12467877, P = 6.76E-10), which accounts for 4.5% of the variance in size. Enlarged THLV is associated with psychosis in this sample, and with reduction of the hippocampus and enlargement of the choroid plexus and caudate. Eight other suggestively significant associations (P < 5.5E-8) were identified with THLV and 5 other brain structures. Although rare deletions of NRXN1 have been previously associated with psychosis, this is the first report of a common SNP variant of NRXN1 associated with enlargement of the THLV in psychosis.


Subject(s)
Calcium-Binding Proteins/genetics , Lateral Ventricles/diagnostic imaging , Neural Cell Adhesion Molecules/genetics , Psychotic Disorders/genetics , Adult , Alleles , Female , Genome-Wide Association Study , Genotype , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Polymorphism, Single Nucleotide , Psychotic Disorders/diagnostic imaging , Young Adult
4.
ACS Nano ; 11(9): 8881-8891, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28850213

ABSTRACT

Oxide-based valence-change memristors are promising nonvolatile memories for future electronics that operate on valence-change reactions to modulate their electrical resistance. The memristance is associated with the movement of oxygen ionic carriers through oxygen vacancies at high electric field strength via structural defect modifications that are still poorly understood. This study employs a Ce1-xGdxO2-y solid solution model to probe the role of oxygen vacancies either set as "free" or as "immobile and clustered" for the resistive switching performance. The experiments, together with the defect chemical model, show that when the vacancies are set as "free", a maximum in memristance is found for 20 mol % of GdO1.5 doping, which clearly coincides with the maximum in ionic conductivity. In contrast, for higher gadolinia concentration, the oxide exhibits only minor memristance, which originates from the decrease in structural symmetry, leading to the formation of "immobile" oxygen defect clusters, thereby reducing the density of mobile ionic carriers available for resistive switching. The research demonstrates guidelines for engineering of the oxide's solid solution series to set the configuration of its oxygen vacancy defects and their mobility to tune the resistive switching for nonvolatile memory and logic applications.

5.
J Am Med Inform Assoc ; 21(6): 969-75, 2014.
Article in English | MEDLINE | ID: mdl-24464852

ABSTRACT

BACKGROUND: As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. METHODS: Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. RESULTS: Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. CONCLUSIONS: Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics.


Subject(s)
Computer Systems , Datasets as Topic , Genomics , Software , Humans , Internet , Phenotype , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...