Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Alzheimers Res Ther ; 10(1): 65, 2018 07 18.
Article in English | MEDLINE | ID: mdl-30021658

ABSTRACT

BACKGROUND: A need exists for easily administered assessment tools to detect mild cognitive changes that are more comprehensive than screening tests but shorter than a neuropsychological battery and that can be administered by physicians, as well as any health care professional or trained assistant in any medical setting. The Toronto Cognitive Assessment (TorCA) was developed to achieve these goals. METHODS: We obtained normative data on the TorCA (n = 303), determined test reliability, developed an iPad version, and validated the TorCA against neuropsychological assessment for detecting amnestic mild cognitive impairment (aMCI) (n = 50/57, aMCI/normal cognition). For the normative study, healthy volunteers were recruited from the Rotman Research Institute registry. For the validation study, the sample was comprised of participants with aMCI or normal cognition based on neuropsychological assessment. Cognitively normal participants were recruited from both healthy volunteers in the normative study sample and the community. RESULTS: The TorCA provides a stable assessment of multiple cognitive domains. The total score correctly classified 79% of participants (sensitivity 80%; specificity 79%). In an exploratory logistic regression analysis, indices of Immediate Verbal Recall, Delayed Verbal and Visual Recall, Visuospatial Function, and Working Memory/Attention/Executive Control, a subset of the domains assessed by the TorCA, correctly classified 92% of participants (sensitivity 92%; specificity 91%). Paper and iPad version scores were equivalent. CONCLUSIONS: The TorCA can improve resource utilization by identifying patients with aMCI who may not require more resource-intensive neuropsychological assessment. Future studies will focus on cross-validating the TorCA for aMCI, and validation for disorders other than aMCI.


Subject(s)
Amnesia/diagnosis , Cognitive Dysfunction/diagnosis , Neuropsychological Tests , Age Factors , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Reference Values , Reproducibility of Results
3.
Neuroimage ; 154: 240-254, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28216431

ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) is a powerful neuroimaging tool, which is often hampered by significant noise confounds. There is evidence that our ability to detect activations in task fMRI is highly dependent on the preprocessing steps used to control noise and artifact. However, the vast majority of studies examining preprocessing pipelines in fMRI have focused on young adults. Given the widespread use of fMRI for characterizing the neurobiology of aging, it is critical to examine how the impact of preprocessing choices varies as a function of age. In this study, we employ the NPAIRS cross-validation framework, which optimizes pipelines based on metrics of prediction accuracy (P) and spatial reproducibility (R), to compare the effects of pipeline optimization between young (21-33 years) and older (61-82 years) cohorts, for three different block-design contrasts. Motion is shown to be a greater issue in the older cohort, and we introduce new statistical approaches to control for potential biases due to head motion during pipeline optimization. In comparison, data-driven methods of physiological noise correction show comparable benefits for both young and old cohorts. Using our optimization framework, we demonstrate that the optimal pipelines tend to be highly similar across age cohorts. In addition, there is a comparable, significant benefit of pipeline optimization across age cohorts, for (P, R) metrics and independent validation measures of activation overlap (both between-subject, within-session and within-subject, between-session). The choice of task contrast consistently shows a greater impact than the age cohort, for (P, R) metrics and activation overlap. Finally, adaptive pipeline optimization per task run shows improved sensitivity to age-related changes in brain activity, particularly for weaker, more complex cognitive contrasts. The current study provides the first detailed examination of preprocessing pipelines across age cohorts, demonstrating a significant benefit of adaptive pipeline optimization across age groups.


Subject(s)
Aging/physiology , Functional Neuroimaging/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Aged, 80 and over , Female , Functional Neuroimaging/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Middle Aged , Reproducibility of Results , Trail Making Test , Young Adult
4.
Sci Rep ; 6: 30895, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27498696

ABSTRACT

There is growing evidence that fluctuations in brain activity may exhibit scale-free ("fractal") dynamics. Scale-free signals follow a spectral-power curve of the form P(f ) ∝ f(-ß), where spectral power decreases in a power-law fashion with increasing frequency. In this study, we demonstrated that fractal scaling of BOLD fMRI signal is consistently suppressed for different sources of cognitive effort. Decreases in the Hurst exponent (H), which quantifies scale-free signal, was related to three different sources of cognitive effort/task engagement: 1) task difficulty, 2) task novelty, and 3) aging effects. These results were consistently observed across multiple datasets and task paradigms. We also demonstrated that estimates of H are robust across a range of time-window sizes. H was also compared to alternative metrics of BOLD variability (SDBOLD) and global connectivity (Gconn), with effort-related decreases in H producing similar decreases in SDBOLD and Gconn. These results indicate a potential global brain phenomenon that unites research from different fields and indicates that fractal scaling may be a highly sensitive metric for indexing cognitive effort/task engagement.


Subject(s)
Aging/physiology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Adult , Aged , Aged, 80 and over , Brain Mapping , Female , Humans , Male , Middle Aged , Reaction Time , Young Adult
6.
PLoS One ; 10(7): e0131520, 2015.
Article in English | MEDLINE | ID: mdl-26161667

ABSTRACT

BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the "pipeline") significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard "fixed" preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets.


Subject(s)
Brain/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Psychomotor Performance/physiology , Adult , Cognition/physiology , Female , Humans , Male , Motion , Multivariate Analysis , Recognition, Psychology/physiology , Reproducibility of Results , Young Adult
7.
Neuroimage ; 59(2): 1299-314, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-21871573

ABSTRACT

The effects of physiological noise may significantly limit the reproducibility and accuracy of BOLD fMRI. However, physiological noise evidences a complex, undersampled temporal structure and is often non-orthogonal relative to the neuronally-linked BOLD response, which presents a significant challenge for identifying and removing such artifact. This paper presents a multivariate, data-driven method for the characterization and removal of physiological noise in fMRI data, termed PHYCAA (PHYsiological correction using Canonical Autocorrelation Analysis). The method identifies high frequency, autocorrelated physiological noise sources with reproducible spatial structure, using an adaptation of Canonical Correlation Analysis performed in a split-half resampling framework. The technique is able to identify physiological effects with vascular-linked spatial structure, and an intrinsic dimensionality that is task- and subject-dependent. We also demonstrate that increasing dimensionality of such physiological noise is correlated with increasing variability in externally-measured respiratory and cardiac processes. Using PHYCAA as a denoising technique significantly improves simulated signal detection with physiological noise, and real data-driven model prediction and reproducibility, for both block and event-related task designs. This is demonstrated compared to no physiological noise correction, and to the widely used RETROICOR (Glover et al., 2000) physiological denoising algorithm, which uses externally measured cardiac and respiration signals.


Subject(s)
Artifacts , Brain Mapping/methods , Brain/physiology , Evoked Potentials/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Female , Humans , Male , Oxygen Consumption/physiology , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...