Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Vis Neurosci ; 28(6): 473-84, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22192504

ABSTRACT

The spatial and temporal pattern of cone packing during marmoset foveal development was explored to understand the variables involved in creating a high acuity area. Retinal ages were between fetal day (Fd) 125 and 6 years. Cone density was determined in wholemounts using a new hexagonal quantification method. Wholemounts were labeled immunocytochemically with rod markers to identify reliably the foveal center. Cones were counted in small windows and density was expressed as cones × 103/mm2 (K). Two weeks before birth (Fd 125-130), cone density had a flat distribution of 20-30 K across the central retina encompassing the fovea. Density began to rise at postnatal day 1 (Pd 1) around, but not in, the foveal center and reached a parafoveal peak of 45-55 K by Pd 10. Between Pd 10 and 33, there was an inversion such that cone density at the foveal center rose rapidly, reaching 283 K by 3 months and 600 K by 5.4 months. Peak foveal density then diminished to 440 K at 6 months and older. Counts done in sections showed the same pattern of low foveal density up to Pd 1, a rapid rise from Pd 30 to 90, followed by a small decrease into adulthood. Increasing foveal cone density was accompanied by 1) a reduction in the amount of Müller cell cytoplasm surrounding each cone, 2) increased stacking of foveal cone nuclei into a mound 6-10 deep, and 3) a progressive narrowing of the rod-free zone surrounding the fovea. Retaining foveal cones in a monolayer precludes final foveal cone densities above 60 K. However, high foveal adult cone density (300 K) can be achieved by having cone nuclei stack into columns and without reducing their nuclear diameter. Marmosets reach adult peak cone density by 3-6 months postnatal, while macaques and humans take much longer. Early weaning and an arboreal environment may require rapid postnatal maturation of the marmoset fovea.


Subject(s)
Callithrix/anatomy & histology , Callithrix/growth & development , Fovea Centralis/growth & development , Gene Expression Regulation, Developmental/physiology , Retina/cytology , Retina/growth & development , Age Factors , Animals , Animals, Newborn , Arrestin/metabolism , Carrier Proteins/metabolism , Cell Count , Embryo, Mammalian , Guanylate Cyclase-Activating Proteins/metabolism , Opsins/metabolism , Synaptophysin/metabolism , Transducin/metabolism
4.
J Pediatr Ophthalmol Strabismus ; 41(6): 345-50, 2004.
Article in English | MEDLINE | ID: mdl-15609519

ABSTRACT

PURPOSE: Screening for detection of retinopathy of prematurity (ROP) currently is limited to indirect ophthalmoscopy, which requires considerable examiner skill and experience. We investigated whether conventional 10 MHz B-scan ultrasonography could document the clinical stages of ROP as accurately as indirect ophthalmoscopy. METHODS: Thirty-four eyes of 18 neonates were examined by masked, independent observers with indirect ophthalmoscopy and digitally recorded 10-MHz B-scan ultrasonography. After pupil dilation and lid speculum placement, the retinologist recorded the stage of retinopathy with a retinal drawing. The ultrasonographer, without use of papillary mydriatics or lid speculum, determined the presence or absence of a ridge or tractional elements, if present on the ridge. RESULTS: Ultrasound grade correlated with clinical grade (R = .79, P < .001). However, nine eyes were overdiagnosed by one stage, and one eye, in which a peripheral detachment was mistaken for an artifact, was underdiagnosed. CONCLUSIONS: Ten-megahertz ultrasonography offers the potential of imaging and detecting the clinical stages of ROP; the use of higher ultrasound frequencies, now becoming commercially available, is likely to enhance diagnostic accuracy. Care must be taken to distinguish between artifact and true anatomical structures in noncontact ultrasound examinations. Neonates with suspected ROP could be screened with B-scan ultrasonography by neonatal personnel without pupillary dilatation or lid speculum, thus eliminating potential morbidity, and clinically significant cases of ROP then could be referred to the retinologist.


Subject(s)
Ophthalmoscopy/methods , Retina/diagnostic imaging , Retinopathy of Prematurity/diagnostic imaging , Fundus Oculi , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Retina/pathology , Retinopathy of Prematurity/classification , Retinopathy of Prematurity/therapy , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...