Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(7)2020 03 18.
Article in English | MEDLINE | ID: mdl-31953340

ABSTRACT

Dental caries is one of the most common diseases worldwide. Bacteria and fungi are both commensals in the oral cavity; however, most research regarding caries has focused on bacterial impacts. The oral fungal mycobiome associated with caries is not well characterized, and its role in disease is unclear. ITS1 amplicon sequencing was used to generate taxonomic profiles from site-specific supragingival plaque samples (n = 82) obtained from 33 children with different caries status. Children were either caries free (CF), caries active with enamel lesions (CAE), or caries active with dentin lesions (CA). Plaque samples were collected from caries-free surfaces (PF) and from enamel (PE) and dentin (PD) lesions. Taxonomic profiles representing the different categorizations (CF-PF, CAE-PF, CAE-PE, CA-PF, CA-PE, and CA-PD) were used to characterize the mycobiome and its change through disease progression. A total of 139 fungal species were identified. Candida albicans was the most abundant species, followed by Candida dubliniensis We found that severely progressed plaque communities (CA-PD) were significantly different from healthy plaque communities (CF-PF). A total of 32 taxa were differentially abundant across the plaque categories. C. albicans, C. dubliniensis, Nigrospora oryzae, and an unclassified Microdochium sp. were correlated with caries, whereas 12 other taxa were correlated with health. C. dubliniensis increased steadily as caries progressed, suggesting that C. dubliniensis may play an important role in caries pathogenicity. In contrast, four health-associated fungal taxa have the potential to antagonize the cariogen Streptococcus mutans via xylitol production, suggesting a possible fungal mechanism that could contribute to maintenance of dental health.IMPORTANCE Early-childhood caries is one of the most prevalent diseases in children worldwide and, while preventable, remains a global public health concern. Untreated cavities are painful and expensive and can lead to tooth loss and a lower quality of life. Caries are driven by acid production via microbial fermentation of dietary carbohydrates, resulting in enamel erosion. While caries is a well-studied disease, most research has focused on bacterial impacts, even though fungi are commensal organisms living within the plaque biofilm. There is very little known about how fungi impact caries pathogenicity. The elucidation of fungal taxa involved in caries disease progression is necessary for a more holistic view of the human oral microbiome. Data from this study will improve our understanding of how the fungal community changes as disease progresses and provide insight into the complex etiology of dental caries, which is necessary for the development of treatment plans and preventative measures.


Subject(s)
Dental Caries/microbiology , Disease Progression , Fungi/isolation & purification , Mouth/microbiology , Mycobiome , Child , Child, Preschool , Fungi/classification , Humans
2.
Mol Biol Evol ; 36(11): 2572-2590, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31350563

ABSTRACT

The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacterial populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here, we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated 12 major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of 11 populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation.

SELECTION OF CITATIONS
SEARCH DETAIL
...