Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
FASEB J ; 36(11): e22587, 2022 11.
Article in English | MEDLINE | ID: mdl-36190443

ABSTRACT

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by the cell cycle inhibitors Cdkn2a, Cdkn1a, and Trp53. Senescent cells are implicated in chronic diseases and tissue repair through their increased secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Here, we use spatial transcriptomics and single-cell RNA sequencing (scRNAseq) to demonstrate that cells displaying senescent characteristics are "transiently" present within regenerating skeletal muscle and within the muscles of D2-mdx mice, a model of Muscular Dystrophy. Following injury, multiple cell types including macrophages and fibrog-adipogenic progenitors (FAPs) upregulate senescent features such as senescence pathway genes, SASP factors, and senescence-associated beta-gal (SA-ß-gal) activity. Importantly, when these cells were removed with ABT-263, a senolytic compound, satellite cells are reduced, and muscle fibers were impaired in growth and myonuclear accretion. These results highlight that an "acute" senescent phenotype facilitates regeneration similar to skin and neonatal myocardium.


Subject(s)
Cellular Senescence , Senotherapeutics , Animals , Cellular Senescence/physiology , Mice , Mice, Inbred mdx , Muscle, Skeletal , Stem Cells/metabolism
3.
J Biol Chem ; 292(37): 15312-15320, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28747436

ABSTRACT

The immunomodulatory receptor Siglec-3/CD33 influences risk for late-onset Alzheimer's disease (LOAD), an apparently human-specific post-reproductive disease. CD33 generates two splice variants: a full-length CD33M transcript produced primarily by the "LOAD-risk" allele and a shorter CD33m isoform lacking the sialic acid-binding domain produced primarily from the "LOAD-protective" allele. An SNP that modulates CD33 splicing to favor CD33m is associated with enhanced microglial activity. Individuals expressing more protective isoform accumulate less brain ß-amyloid and have a lower LOAD risk. How the CD33m isoform increases ß-amyloid clearance remains unknown. We report that the protection by the CD33m isoform may not be conferred by what it does but, rather, from what it cannot do. Analysis of blood neutrophils and monocytes and a microglial cell line revealed that unlike CD33M, the CD33m isoform does not localize to cell surfaces; instead, it accumulates in peroxisomes. Cell stimulation and activation did not mobilize CD33m to the surface. Thus, the CD33m isoform may neither interact directly with amyloid plaques nor engage in cell-surface signaling. Rather, production and localization of CD33m in peroxisomes is a way of diminishing the amount of CD33M and enhancing ß-amyloid clearance. We confirmed intracellular localization by generating a CD33m-specific monoclonal antibody. Of note, CD33 is the only Siglec with a peroxisome-targeting sequence, and this motif emerged by convergent evolution in toothed whales, the only other mammals with a prolonged post-reproductive lifespan. The CD33 allele that protects post-reproductive individuals from LOAD may have evolved by adaptive loss-of-function, an example of the less-is-more hypothesis.


Subject(s)
Alzheimer Disease/genetics , Genetic Predisposition to Disease , Macrophages/metabolism , Microglia/metabolism , Neutrophils/metabolism , Polymorphism, Single Nucleotide , Sialic Acid Binding Ig-like Lectin 3/metabolism , Alleles , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Motifs , Bacterial Proteins/metabolism , Bacterial Proteins/toxicity , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/pathology , Humans , Lipopolysaccharides/toxicity , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Microglia/cytology , Microglia/immunology , Microglia/pathology , N-Formylmethionine Leucyl-Phenylalanine/toxicity , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuraminidase/metabolism , Neuraminidase/toxicity , Neutrophil Activation/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/pathology , Peroxisomes/drug effects , Peroxisomes/metabolism , Peroxisomes/pathology , Phylogeny , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Sorting Signals , Protein Transport/drug effects , Sialic Acid Binding Ig-like Lectin 3/chemistry , Sialic Acid Binding Ig-like Lectin 3/genetics
5.
Proc Natl Acad Sci U S A ; 113(1): 74-9, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26621708

ABSTRACT

The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer's dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer's disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin.


Subject(s)
Alzheimer Disease/genetics , Brain/physiopathology , Cognition Disorders/genetics , Genetic Fitness , Sialic Acid Binding Ig-like Lectin 3/physiology , Alleles , Alternative Splicing , Animals , Apolipoproteins E/genetics , Biological Evolution , Cerebrovascular Disorders/genetics , Fertility/genetics , Genetic Loci , Humans , Pan troglodytes , Selection, Genetic , Sialic Acid Binding Ig-like Lectin 3/genetics
6.
J Proteomics ; 135: 90-100, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26626628

ABSTRACT

Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution.


Subject(s)
Ecology , Evolution, Molecular , Glycomics , Polysaccharides , Polysaccharides/genetics , Polysaccharides/metabolism
7.
PLoS One ; 10(11): e0140569, 2015.
Article in English | MEDLINE | ID: mdl-26536134

ABSTRACT

The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term "Oat-related" (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Biological Transport/genetics , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Biological Evolution , Carnitine/metabolism , Humans , Mice , Multigene Family , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Phylogeny , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary
8.
Immunogenetics ; 66(11): 671-4, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25124893

ABSTRACT

Human sialic acid biology is unusual and thought to be unique among mammals. Humans lack a functional cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) protein and cannot synthesize the sugar Neu5Gc, an innate mammalian signal of self. Losing this sugar changed how humans interact with some of our deadliest pathogens: malaria, influenza, and streptococcus among others. We show that the New World monkeys, comprising the third of all primate species, have human-like sialic acid biology. They have lost Neu5Gc because of an independent CMAH inactivation ~30 million years ago (mya) (compared to ~3 mya in hominids). This parallel loss of Neu5Gc opens sialic acid biology to comparative phylogenetic analysis and reveals an unexpected conservation priority. New World monkeys risk infection by human pathogens that can recognize cells in the absence of Neu5Gc. This striking molecular convergence provides a mechanism that could explain the long-standing observation that New World monkeys are susceptible to some human diseases that cannot be transmitted to other primates.


Subject(s)
Antigens, Surface/genetics , Carbohydrates/genetics , Cell Membrane/genetics , Platyrrhini/genetics , Amino Acid Sequence , Animals , Biological Evolution , Humans , Mixed Function Oxygenases/genetics , Molecular Sequence Data , N-Acetylneuraminic Acid/genetics , Phylogeny , Sequence Homology, Amino Acid
9.
PLoS Genet ; 9(2): e1003287, 2013.
Article in English | MEDLINE | ID: mdl-23408913

ABSTRACT

Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp.), a model system of reproductive protein evolution. We test the evolutionary rates (d(N)/d(S)) of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14), and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL.


Subject(s)
Egg Proteins , Evolution, Molecular , Fertilization/genetics , Selection, Genetic , Spermatozoa/metabolism , Animals , Egg Proteins/genetics , Egg Proteins/metabolism , Female , Gastropoda/genetics , Gastropoda/metabolism , Male , Molecular Mimicry , Mucoproteins/genetics , Mucoproteins/metabolism , Phylogeny , Reproductive Isolation
10.
J Biol Chem ; 288(10): 6904-11, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23329843

ABSTRACT

Glycans, oligo- and polysaccharides secreted or attached to proteins and lipids, cover the surfaces of all cells and have a regulatory capacity and structural diversity beyond any other class of biological molecule. Glycans may have evolved these properties because they mediate cellular interactions and often face pressure to evolve new functions rapidly. We approach this idea two ways. First, we discuss evolutionary innovation. Glycan synthesis, regulation, and mode of chemical interaction influence the spectrum of new forms presented to evolution. Second, we describe the evolutionary conflicts that arise when alleles and individuals interact. Glycan regulation and diversity are integral to these biological negotiations. Glycans are tasked with such an amazing diversity of functions that no study of cellular interaction can begin without considering them. We propose that glycans predominate the cell surface because their physical and chemical properties allow the rapid innovation required of molecules on the frontlines of evolutionary conflict.


Subject(s)
Glycoproteins/metabolism , Polysaccharides/metabolism , Proteins/metabolism , Animals , Epistasis, Genetic , Evolution, Molecular , Glycomics/methods , Glycomics/trends , Glycoproteins/genetics , Humans , Mutation , Proteins/genetics
11.
Proc Natl Acad Sci U S A ; 108(43): 17743-8, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21987817

ABSTRACT

Humans lack the common mammalian cell surface molecule N-glycolylneuraminic acid (Neu5Gc) due to a CMAH gene inactivation, which occurred approximately three million years ago. Modern humans produce antibodies specific for Neu5Gc. We hypothesized that anti-Neu5Gc antibodies could enter the female reproductive tract and target Neu5Gc-positive sperm or fetal tissues, reducing reproductive compatibility. Indeed, female mice with a human-like Cmah(-/-) mutation and immunized to express anti-Neu5Gc antibodies show lower fertility with Neu5Gc-positive males, due to prezygotic incompatibilities. Human anti-Neu5Gc antibodies are also capable of targeting paternally derived antigens and mediate cytotoxicity against Neu5Gc-bearing chimpanzee sperm in vitro. Models of populations polymorphic for such antigens show that reproductive incompatibility by female immunity can drive loss-of-function alleles to fixation from moderate initial frequencies. Initially, the loss of a cell-surface antigen can occur due to drift in isolated populations or when natural selection favors the loss of a receptor exploited by pathogens, subsequently the same loss-of-function allele can come under sexual selection because it avoids being targeted by the female immune system. Thus, we provide evidence of a link between sexual selection and immune function: Antigenicity in females can select against foreign paternal antigens on sperm and rapidly fix loss-of-function alleles. Similar circumstances existed when the CMAH null allele was polymorphic in ancestral hominins, just before the divergence of Homo from australopithecines.


Subject(s)
Antibodies/immunology , Mating Preference, Animal/physiology , Mixed Function Oxygenases/genetics , Neuraminic Acids/immunology , Pan troglodytes/immunology , Selection, Genetic , Sialic Acids/metabolism , Animals , Antigens/immunology , Female , Gene Frequency , Genetics, Population , Humans , Male , Mice , Mice, Knockout , Mixed Function Oxygenases/metabolism , Pan troglodytes/metabolism , Spermatozoa/immunology , Spermatozoa/metabolism
12.
Mol Ecol ; 20(11): 2240-57, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21507096

ABSTRACT

Most studies of behaviour examine traits whose proximate causes include sensory input and neural decision-making, but conflict and collaboration in biological systems began long before brains or sensory systems evolved. Many behaviours result from non-neural mechanisms such as direct physical contact between recognition proteins or modifications of development that coincide with altered behaviour. These simple molecular mechanisms form the basis of important biological functions and can enact organismal interactions that are as subtle, strategic and interesting as any. The genetic changes that underlie divergent molecular behaviours are often targets of selection, indicating that their functional variation has important fitness consequences. These behaviours evolve by discrete units of quantifiable phenotypic effect (amino acid and regulatory mutations, often by successive mutations of the same gene), so the role of selection in shaping evolutionary change can be evaluated on the scale at which heritable phenotypic variation originates. We describe experimental strategies for finding genes that underlie biochemical and developmental alterations of behaviour, survey the existing literature highlighting cases where the simplicity of molecular behaviours has allowed insight to the evolutionary process and discuss the utility of a genetic knowledge of the sources and spectrum of phenotypic variation for a deeper understanding of how genetic and phenotypic architectures evolve.


Subject(s)
Behavior , Ecological and Environmental Phenomena , Evolution, Molecular , Animals , Genetic Fitness , Humans , Models, Genetic , Phenotype
13.
PLoS Genet ; 5(7): e1000570, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19629160

ABSTRACT

Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female-male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation.


Subject(s)
Egg Proteins/genetics , Evolution, Molecular , Gastropoda/genetics , Mucoproteins/genetics , Receptors, Cell Surface/genetics , Animals , Egg Proteins/metabolism , Female , Fertilization , Gastropoda/metabolism , Genetic Speciation , Male , Mucoproteins/metabolism , Polymorphism, Genetic , Receptors, Cell Surface/metabolism
14.
Int J Dev Biol ; 52(5-6): 759-68, 2008.
Article in English | MEDLINE | ID: mdl-18649288

ABSTRACT

Sperm of the oyster, Crassostrea gigas, have ring-shaped acrosomes that, after exocytosis, bind the sperm to the egg vitelline layer. Isolated acrosomal rings contain proteins of various sizes: 35-, 48-, 63-, 75- and 88-kDa. These proteins, called bindins, have identical 24-residue signal peptides and conserved 97-residue N-terminal sequences, and they differ in mass because of the presence of between 1 and 5 tandemly repeated 134-residue fucose-binding lectin (F-lectin) domains. Southern blots suggest that oyster bindin is a single copy gene, but F-lectin repeat number and sequence are variable within and between individuals. Eight residues in the F-lectin fucose-binding groove are subject to positive diversifying selection, indicating a history of adaptive evolution at the lectin's active site. There is one intron in the middle of each F-lectin repeat, and recombination in this intron creates many combinations of repeat halves. Alternative splicing creates many additional size and sequence variants of the repeat array. Males contain full-length bindin cDNAs of all 5 possible sizes, but only one or two protein mass forms exist in each individual. Sequence analysis indicates that recombination and alternate splicing create hundreds, possibly thousands, of different bindin sequences in C. gigas. The extreme within-species sequence variation in the F-lectin sequence of oyster bindin is a novel finding; most male gamete-recognition proteins are much less variable. In experimental conditions oyster eggs have poor polyspermy blocks, and bindin diversity could be an evolutionary response by sperm to match egg receptors that have diversified to avoid being fertilized by multiple sperm.


Subject(s)
Fertilization , Fucose/chemistry , Glycoproteins/physiology , Lectins/chemistry , Ostreidae/physiology , Sperm-Ovum Interactions , Spermatozoa/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Female , Male , Molecular Sequence Data , Receptors, Cell Surface/metabolism , Sequence Homology, Amino Acid , Species Specificity
15.
Evolution ; 61(4): 772-83, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17439610

ABSTRACT

Gamete-recognition proteins often evolve rapidly, but it is not known if their divergence occurs within species and corresponds with the evolution of reproductive isolation, or if divergence typically accumulates between already isolated lineages. We examined the evolution of a candidate gamete-recognition protein in several sympatric and allopatric populations of Mytilus blue mussels, species that hybridize in nature. Within a single species, Mytilus galloprovincialis, we found adaptive divergence of Lysin-M7, a sperm acrosomal protein that dissolves the egg vitelline envelope during fertilization. Mytilus galloprovincialis Lysin-M7 alleles group into two distinct clades (termed G and G(D)), and individual alleles in these clades are separated from each other by at least three and up to eleven amino-acid substitutions. Maximum-likelihood estimates of selective pressure (dN/dS =omega) implicate selection in the divergence between M. galloprovincialis Lysin-M7 clades, and within the G(D) clade. Exact tests of population differentiation indicate that the relative frequency of G and G(D) Lysin-M7 alleles differs significantly among M. galloprovincialis populations. Compared with allopatric Mediterranean samples, Lysin-M7 alleles in the G(D) clade are found at elevated frequency in samples from the East Atlantic and California, areas of secondary contact and hybridization between Mytilus species, and Australia, an area of unknown species composition. Adaptive divergence between the alleles most common in allopatry and those found at elevated frequency in samples from sympatry suggests that selection pressures acting in hybridizing populations, likely following Pleistocene secondary contact with M. edulis in the East Atlantic, drove the divergence of Lysin-M7 in M. galloprovincialis.


Subject(s)
Adaptation, Biological/genetics , Alleles , Evolution, Molecular , Hybridization, Genetic/genetics , Mucoproteins/genetics , Mytilus/genetics , Phylogeny , Selection, Genetic , Acrosome/metabolism , Amino Acid Sequence , Animals , Base Sequence , DNA Primers , Demography , Likelihood Functions , Male , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...