Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 112(7): 077201, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579629

ABSTRACT

In this Letter we address spin wave dynamics involved in fast and selective vortex core polarity reversal by rotating magnetic field bursts. In a first example we explain the origin of the delayed switching for excitations with short bursts of only one period duration as an interference effect between spin wave modes. Second, when the vortex core is initially no longer at rest but in gyrotropic motion, the magnetization dynamics become more complicated and the interaction of spin waves with the vortex core leads to a variety of nonlinear effects. Our analysis allows us to explain the experimentally observed switching diagram for simultaneous excitation of spin waves and gyrotropic mode.

2.
Nat Commun ; 2: 279, 2011.
Article in English | MEDLINE | ID: mdl-21505435

ABSTRACT

Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.


Subject(s)
Electromagnetic Fields , Models, Theoretical , Nanotechnology/methods , Computer Simulation , Ferric Compounds , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...