Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626772

ABSTRACT

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Subject(s)
Frontotemporal Dementia , Neurons , Osteopontin , tau Proteins , Osteopontin/metabolism , Osteopontin/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Animals , tau Proteins/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/pathology , Mutation/genetics
2.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370689

ABSTRACT

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.

3.
J Neurosci ; 44(3)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38050142

ABSTRACT

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Female , Humans , Male , Alzheimer Disease/metabolism , Cognition , Neurons/metabolism , RNA , RNA Splicing/genetics , tau Proteins/metabolism
4.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993746

ABSTRACT

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.

5.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Article in English | MEDLINE | ID: mdl-36357715

ABSTRACT

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , MicroRNAs , Mice , Animals , Humans , Adult , Methyltransferases/genetics , Phosphorylation/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Induced Pluripotent Stem Cells/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , MicroRNAs/genetics , tau Proteins/metabolism , Mammals/metabolism
6.
Cell Death Dis ; 13(11): 959, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379916

ABSTRACT

Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with ß-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Peptidomimetics , Humans , Caspase 2/metabolism , Caspase 3/metabolism , Neurons/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Peptidomimetics/pharmacology , Peptidomimetics/metabolism
7.
EMBO J ; 39(20): e103791, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32865299

ABSTRACT

The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Animals , Cell Line , Cholesterol/biosynthesis , Endoplasmic Reticulum/genetics , Fibroblasts/metabolism , Gene Knockdown Techniques , Gene Silencing , Humans , Induced Pluripotent Stem Cells , Lipid Metabolism , Lipidomics , Mice , Mitochondria/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/genetics , Presenilin-2/metabolism , Protein Domains , RNA, Small Interfering , Sphingomyelin Phosphodiesterase/metabolism
8.
Nat Commun ; 10(1): 53, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604771

ABSTRACT

CRISPR/Cas9 guided gene-editing is a potential therapeutic tool, however application to neurodegenerative disease models has been limited. Moreover, conventional mutation correction by gene-editing would only be relevant for the small fraction of neurodegenerative cases that are inherited. Here we introduce a CRISPR/Cas9-based strategy in cell and animal models to edit endogenous amyloid precursor protein (APP) at the extreme C-terminus and reciprocally manipulate the amyloid pathway, attenuating APP-ß-cleavage and Aß production, while up-regulating neuroprotective APP-α-cleavage. APP N-terminus and compensatory APP-homologues remain intact, with no apparent effects on neurophysiology in vitro. Robust APP-editing is seen in human iPSC-derived neurons and mouse brains with no detectable off-target effects. Our strategy likely works by limiting APP and BACE-1 approximation, and we also delineate mechanistic events that abrogates APP/BACE-1 convergence in this setting. Our work offers conceptual proof for a selective APP silencing strategy.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Gene Editing/methods , Genetic Therapy/methods , Neurodegenerative Diseases/therapy , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/cytology , Brain/pathology , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons , Stereotaxic Techniques , Transfection , Treatment Outcome
9.
Neurosci Lett ; 697: 49-58, 2019 04 01.
Article in English | MEDLINE | ID: mdl-29758300

ABSTRACT

Age-related neurodegenerative diseases are of critical concern to the general population and research/medical community due to their health impact and socioeconomic consequences. A feature of most, if not all, neurodegenerative disorders is the presence of proteinopathies, in which misfolded or conformationally altered proteins drive disease progression and are often used as a primary neuropathological marker of disease. In particular, Alzheimer's disease (AD) is characterized by abnormal accumulation of protein aggregates, primarily extracellular plaques composed of the Aß peptide and intracellular tangles comprised of the tau protein, both of which may indicate a primary defect in protein clearance. Protein degradation is a key cellular mechanism for protein homeostasis and is essential for cell survival but is disrupted in neurodegenerative diseases. Dysregulation in proteolytic pathways - mainly the autophagic-lysosomal system (A-LS) and the ubiquitin-proteasome system (UPS) - has been increasingly associated with proteinopathies in neurodegenerative diseases. Here we review the role of dysfunctional autophagy underlying AD-related proteinopathy and discuss how to model this aspect of disease, as well as summarize recent advances in translational strategies for targeted A-LS dysfunction in AD.


Subject(s)
Alzheimer Disease/pathology , Lysosomes/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Autophagy/physiology , Biological Transport , Humans , Lysosomes/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Proteolysis , tau Proteins/metabolism
10.
Mol Aspects Med ; 43-44: 54-65, 2015.
Article in English | MEDLINE | ID: mdl-26101165

ABSTRACT

Human pluripotent stem cells (PSCs) have the capacity to revolutionize medicine by allowing the generation of functional cell types such as neurons for cell replacement therapy. However, the more immediate impact of PSCs on treatment of Alzheimer's disease (AD) will be through improved human AD model systems for mechanistic studies and therapeutic screening. This review will first briefly discuss different types of PSCs and genome-editing techniques that can be used to modify PSCs for disease modeling or for personalized medicine. This will be followed by a more in depth analysis of current AD iPSC models and a discussion of the need for more complex multicellular models, including cell types such as microglia. It will finish with a discussion on current clinical trials using PSC-derived cells and the long-term potential of such strategies for treating AD.


Subject(s)
Alzheimer Disease/therapy , Induced Pluripotent Stem Cells/transplantation , Regenerative Medicine , Stem Cell Transplantation , Alzheimer Disease/pathology , Cell Differentiation/genetics , Humans , Neurons/pathology
11.
Am J Physiol Cell Physiol ; 308(3): C209-19, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25394470

ABSTRACT

Production and isolation of forebrain interneuron progenitors are essential for understanding cortical development and developing cell-based therapies for developmental and neurodegenerative disorders. We demonstrate production of a population of putative calretinin-positive bipolar interneurons that express markers consistent with caudal ganglionic eminence identities. Using serum-free embryoid bodies (SFEBs) generated from human inducible pluripotent stem cells (iPSCs), we demonstrate that these interneuron progenitors exhibit morphological, immunocytochemical, and electrophysiological hallmarks of developing cortical interneurons. Finally, we develop a fluorescence-activated cell-sorting strategy to isolate interneuron progenitors from SFEBs to allow development of a purified population of these cells. Identification of this critical neuronal cell type within iPSC-derived SFEBs is an important and novel step in describing cortical development in this iPSC preparation.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/physiology , Embryoid Bodies/physiology , Induced Pluripotent Stem Cells/physiology , Interneurons/physiology , Animals , Cells, Cultured , Fibroblasts/physiology , Humans , Mice , Mice, Knockout
12.
PLoS One ; 9(7): e103418, 2014.
Article in English | MEDLINE | ID: mdl-25072157

ABSTRACT

Many protocols have been designed to differentiate human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48-55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of iPSC-derived neurons mature over time.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Neurons/physiology , Animals , Calcium/metabolism , Coculture Techniques , Electrophysiological Phenomena , Humans , Immunophenotyping , Mice , Neuroglia , Patch-Clamp Techniques , Synaptic Potentials , Synaptic Transmission , Time Factors
13.
Acta Neuropathol Commun ; 2: 4, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24398250

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative disease generally lack neuropathological confirmation, the gold standard for disease classification and grading of severity. The use of tissue with a definitive neuropathological diagnosis would be an ideal source for iPSCs. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells, and thus was not frozen in the presence of cryoprotectants such as DMSO. RESULTS: We report the generation of iPSCs from frozen non-cryoprotected dural tissue stored at -80°C for up to 11 years. This autopsy cohort included subjects with Alzheimer's disease and four other neurodegenerative diseases. CONCLUSIONS: Disease-specific iPSCs can be generated from readily available, archival biobanked tissue. This allows for rapid expansion of generating iPSCs with confirmed pathology as well as allowing access to rare patient variants that have been banked.


Subject(s)
Dura Mater/pathology , Induced Pluripotent Stem Cells/physiology , Alzheimer Disease/pathology , Animals , Antigens, Surface/metabolism , Cell Differentiation , Cell Line, Transformed/pathology , Cell Proliferation , Databases as Topic , Fibroblasts/metabolism , Fibroblasts/virology , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/pathology , Mice , Nanog Homeobox Protein , Neurodegenerative Diseases/pathology , Octamer Transcription Factor-3/metabolism , Postmortem Changes , Proteoglycans/metabolism , Skin/cytology , Stage-Specific Embryonic Antigens/metabolism
14.
PLoS One ; 9(1): e84547, 2014.
Article in English | MEDLINE | ID: mdl-24416243

ABSTRACT

Presenilin 1 (PSEN1) encodes the catalytic subunit of γ-secretase, and PSEN1 mutations are the most common cause of early onset familial Alzheimer's disease (FAD). In order to elucidate pathways downstream of PSEN1, we characterized neural progenitor cells (NPCs) derived from FAD mutant PSEN1 subjects. Thus, we generated induced pluripotent stem cells (iPSCs) from affected and unaffected individuals from two families carrying PSEN1 mutations. PSEN1 mutant fibroblasts, and NPCs produced greater ratios of Aß42 to Aß40 relative to their control counterparts, with the elevated ratio even more apparent in PSEN1 NPCs than in fibroblasts. Molecular profiling identified 14 genes differentially-regulated in PSEN1 NPCs relative to control NPCs. Five of these targets showed differential expression in late onset AD/Intermediate AD pathology brains. Therefore, in our PSEN1 iPSC model, we have reconstituted an essential feature in the molecular pathogenesis of FAD, increased generation of Aß42/40, and have characterized novel expression changes.


Subject(s)
Alzheimer Disease/pathology , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Presenilin-1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amyloid beta-Peptides/biosynthesis , Animals , Apolipoproteins E/genetics , Apoptosis Regulatory Proteins , Base Sequence , Brain/cytology , Brain/pathology , Cell Differentiation , Cell Line , Eye Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation , Genotype , Humans , Mutation , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/pathology , Peptide Fragments/biosynthesis , Presenilin-1/genetics , Rats , Suppressor of Cytokine Signaling Proteins/genetics
15.
PLoS One ; 8(3): e59867, 2013.
Article in English | MEDLINE | ID: mdl-23555815

ABSTRACT

Current methods to derive induced pluripotent stem cell (iPSC) lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS) to isolate single cells expressing the cell surface marker signature CD13(NEG)SSEA4(POS)Tra-1-60(POS) on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral) or non- integrating (Sendai virus) reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.


Subject(s)
Cellular Reprogramming , Fibroblasts/cytology , Flow Cytometry , Induced Pluripotent Stem Cells/cytology , Skin/cytology , Adult , Animals , Biopsy , Cell Differentiation , Cell Separation , Cells, Cultured , Female , Humans , Karyotyping , Male , Mice , Middle Aged , Skin/pathology , Teratoma/pathology , Time Factors
16.
Stem Cell Res ; 10(3): 454-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23500645

ABSTRACT

Three-dimensional aggregation cultures allow for complex development of differentiated human induced pluripotent stem cells. However, this approach is not easily amenable to live-cell imaging and electrophysiological applications due to the thickness and the geometry of the tissue. Here, we present an improvement on the traditional aggregation method by combining the use of cell culture inserts with serum-free embryoid bodies (SFEBs). The use of this technique allows the structures to maintain their three-dimensional structure while thinning substantially. We demonstrate that this technique can be used for electrophysiological recodings as well as live-cell calcium imaging combined with electrical stimulation, akin to organotypic slice preparations. This provides an important experimental tool that can be used to bridge 3-D structures with traditional monolayer approaches used in stem cell applications.


Subject(s)
Embryoid Bodies/cytology , Induced Pluripotent Stem Cells/cytology , Adult , Calcium/metabolism , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Electric Stimulation , Electrodes , Humans , Induced Pluripotent Stem Cells/physiology , Male
17.
Ann N Y Acad Sci ; 1255: 16-29, 2012 May.
Article in English | MEDLINE | ID: mdl-22458653

ABSTRACT

The New York Stem Cell Foundation's "Sixth Annual Translational Stem Cell Research Conference" convened on October 11-12, 2011 at the Rockefeller University in New York City. Over 450 scientists, patient advocates, and stem cell research supporters from 14 countries registered for the conference. In addition to poster and platform presentations, the conference featured panels entitled "Road to the Clinic" and "The Future of Regenerative Medicine."


Subject(s)
Hematopoietic Stem Cells/physiology , Stem Cell Research , Stem Cell Transplantation , Diabetes Mellitus/therapy , Heart Diseases/therapy , Humans , Muscular Diseases/therapy , Neoplasms/therapy , Nervous System Diseases/therapy , Regenerative Medicine , Translational Research, Biomedical
18.
J Biol Chem ; 287(3): 2247-56, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22128169

ABSTRACT

We report that Sh3rf2, a homologue of the pro-apoptotic scaffold POSH (Plenty of SH3s), acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway. siRNA-mediated knockdown of Sh3rf2 promotes apoptosis of neuronal PC12 cells, cultured cortical neurons, and C6 glioma cells. This death appears to result from activation of JNK signaling. Loss of Sh3rf2 triggers activation of JNK and its target c-Jun. Also, apoptosis promoted by Sh3rf2 knockdown is inhibited by dominant-negative c-Jun as well as by a JNK inhibitor. Investigation of the mechanism by which Sh3rf2 regulates cell survival implicates POSH, a scaffold required for activation of pro-apoptotic JNK/c-Jun signaling. In cells lacking POSH, Sh3rf2 knockdown is unable to activate JNK. We further find that Sh3rf2 binds POSH to reduce its levels by a mechanism that requires the RING domains of both proteins and that appears to involve proteasomal POSH degradation. Conversely, knockdown of Sh3rf2 promotes the stabilization of POSH protein and activation of JNK signaling. Finally, we show that endogenous Sh3rf2 protein rapidly decreases following several different apoptotic stimuli and that knockdown of Sh3rf2 activates the pro-apoptotic JNK pathway in neuronal cells. These findings support a model in which Sh3rf2 promotes proteasomal degradation of pro-apoptotic POSH in healthy cells and in which apoptotic stimuli lead to rapid loss of Sh3rf2 expression, and consequently to stabilization of POSH and JNK activation and cell death. On the basis of these observations, we propose the alternative name POSHER (POSH-eliminating RING protein) for the Sh3rf2 protein.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cerebral Cortex/metabolism , Models, Biological , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Adaptor Proteins, Signal Transducing/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Survival/physiology , Cerebral Cortex/cytology , Enzyme Activation , Gene Knockdown Techniques , HEK293 Cells , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Nerve Tissue Proteins/genetics , Neurons/cytology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , PC12 Cells , Proteasome Endopeptidase Complex/genetics , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Rats , Signal Transduction/physiology
19.
Cell Res ; 19(8): 950-61, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19546888

ABSTRACT

Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis - nerve growth factor (NGF) deprivation and DNA damage - cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activation) of c-Cbl. Targeting c-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl proteins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK activation and on cell death.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , JNK Mitogen-Activated Protein Kinases/metabolism , Neurons/enzymology , Proto-Oncogene Proteins c-cbl/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , DNA Damage , Humans , Jurkat Cells , MAP Kinase Kinase Kinases/metabolism , Nerve Growth Factor/metabolism , Neurons/metabolism , PC12 Cells , Phosphorylation , Proto-Oncogene Proteins c-cbl/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Signal Transduction , Mitogen-Activated Protein Kinase Kinase Kinase 11
SELECTION OF CITATIONS
SEARCH DETAIL
...