Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Radiat Oncol ; 7(2): 100780, 2022.
Article in English | MEDLINE | ID: mdl-34825112

ABSTRACT

BACKGROUND: Strategies for managing respiratory motion, specifically motion-encompassing methods, in radiation therapy typically assume reproducible breathing. In reality, respiratory motion variations occur and ultimately cause tumor motion variations, which can result in differences between the planned and delivered dose distributions. Therefore, breathing guidance techniques have been investigated to improve respiratory reproducibility. To our knowledge, bilevel positive airway pressure (BIPAP) ventilation assistance has not been previously investigated as a technique for improving respiratory reproducibility and is the focus of this work. METHODS AND MATERIALS: Ten patients undergoing radiation therapy treatment for cancers affected by respiratory motion (eg, lung and esophagus) participated in sessions in which their breathing was recorded during their course of treatment; these sessions occurred either before or after radiation treatments. Both unassisted free-breathing (FB) and BIPAP ventilation-assisted respiratory volume data were collected from each patient using spirometry. Patients used 2 different BIPAP ventilators (fixed BIPAP and flexible BIPAP), each configured to deliver the same volume of air per breath (ie, tidal volume). The flexible BIPAP ventilator permitted patient triggering (ie, it permitted patients to initiate each breath), and the fixed BIPAP did not. Intrasession and intersession metrics quantifying tidal volume variations were calculated and compared between the specific breathing platforms (FB or BIPAP). In addition, patient tolerance of both BIPAP ventilators was qualitatively assessed through verbal feedback. RESULTS: Both BIPAP ventilators were tolerated by patients, although the fixed BIPAP was not as well tolerated as the flexible BIPAP. Both BIPAP ventilators showed significant reductions (P < .05) in intrasession tidal volume variation compared with FB. However, only the fixed BIPAP significantly reduced the intersession tidal volume variation compared with FB. CONCLUSIONS: Based on the established correlation between tidal volume and tumor motion, any reduction of the tidal volume variation could result in reduced tumor motion variation. Fixed BIPAP ventilation was found to be tolerated by patients and was shown to significantly reduce intrasession and intersession tidal volume variations compared with FB. Therefore, future investigation into the potential of fixed BIPAP ventilation is warranted to define the possible clinical benefits.

2.
Med Dosim ; 46(3): 264-268, 2021.
Article in English | MEDLINE | ID: mdl-33771435

ABSTRACT

The purpose of this work was to evaluate using Varian HyperArc as a planning and treatment solution for whole brain radiotherapy (WBRT) with hippocampal sparing following Radiation Therapy Oncology Group (RTOG) 0933 dosimetric criteria. Ten patients previously treated for intracranial lesions were retrospectively planned for WBRT with hippocampal sparing using HyperArc and a 2-arc coplanar VMAT technique. The whole brain and hippocampus were delineated on fused MRI and CT datasets. The planning target volume (PTV), defined as the whole brain excluding the hippocampal avoidance region, was prescribed 30 Gy in 10 fractions. Plans were evaluated using dosimetric parameters which included the volume of 105% of the prescription dose (V105%) and the maximum dose to the PTV, and the minimum dose to the hippocampus. The planning time, delivery time, and delivery quality assurance (QA) results were also evaluated. Statistical significance was performed between the HyperArc and coplanar VMAT metrics using the Wilcoxon signed-rank test with a significance level of 0.05. All plans met RTOG 0933 dosimetric criteria. HyperArc plans demonstrated significant improvements in PTV dosimetric quality which included a reduced V105% of 6 ± 7% and decreased maximum dose of 1.3 ± 0.3 Gy, compared to coplanar VMAT. Significant OAR sparing was also found for HyperArc plans that included a decreased minimum dose to the hippocampus of 0.3 ± 0.3 Gy. Coplanar VMAT plans resulted in significantly shorter planning and delivery times, compared to HyperArc, by 2.4 minutes and 1.5 minutes, respectively. No significant difference was found between the delivery QA results. This study demonstrated using Varian HyperArc as a planning and treatment solution for WBRT with hippocampal sparing following RTOG 0933 dosimetric criteria. The primary advantages of WBRT with hippocampal sparing using HyperArc, compared to coplanar VMAT, are the gains in OAR sparing and reduced high dose volumes to the PTV.


Subject(s)
Brain Neoplasms , Radiotherapy, Intensity-Modulated , Brain , Brain Neoplasms/radiotherapy , Hippocampus , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...