Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 47: 69-75, 2017 May.
Article in English | MEDLINE | ID: mdl-28259519

ABSTRACT

The antigenicity of alum-adsorbed diphtheria toxoid (DTd) was determined in combination vaccines, containing DTd, tetanus toxoid and inactivated poliovirus. A panel of monoclonal antibodies was used, covering five epitopes, distributed over the antigen. The resulting antigenic fingerprint of DTd demonstrates consistency of adsorption at antigen level in final product combination vaccines. The antigenic quality of DTd alone, adsorbed to aluminium phosphate, was also determined and compared with pre-adsorbed toxoid (starting material as well as toxoid desorbed from aluminium phosphate). Some epitopes became less accessible after adsorption, while others became relatively better exposed. Some epitopes disappeared almost completely upon adsorption, but were re-established after desorption of the antigen. The results indicate that DTd is adsorbed to aluminium phosphate in a preferred orientation and not randomly.


Subject(s)
Aluminum Compounds/chemistry , Antibodies, Bacterial/chemistry , Antibodies, Monoclonal, Murine-Derived/chemistry , Antigens, Bacterial/chemistry , Diphtheria Toxoid/chemistry , Phosphates/chemistry , Immunogenicity, Vaccine
2.
Biologicals ; 41(4): 231-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23726755

ABSTRACT

The detoxification of tetanus toxin by formaldehyde is a crucial step in the production of tetanus toxoid. The inactivation results in chemically modified proteins and it determines largely the ultimate efficacy and safety of the vaccine. Currently, the quality of tetanus toxoid lots is evaluated in potency and safety tests performed in animals. As a possible alternative, this article describes a panel of in vitro methods, which provides detailed information about the quality of tetanus toxoid. Ten experimental lots of tetanus toxoid were prepared using increasing concentrations of formaldehyde and glycine to obtain tetanus toxoids having differences in antigenicity, immunogenicity, residual toxicity and protein structure. The structural properties of each individual toxoid were determined using immunochemical and physicochemical methods, including biosensor analysis, ELISA, circular dichroism, TNBS assay, differential scanning calorimetry, fluorescence and SDS-PAGE. The quality of a tetanus toxoid lot can be assessed by these set of analytical techniques. Based on antigenicity, immunogenicity and residual toxicity data, criteria are formulated that tetanus toxoids lot have to meet in order to have a high quality. The in vitro methods are a valuable selection of techniques for monitoring consistency of production of tetanus toxoid, especially for the detoxification process of tetanus toxin.


Subject(s)
Formaldehyde/chemistry , Tetanus Toxin/chemistry , Tetanus Toxin/pharmacology , Tetanus Toxoid/chemistry , Tetanus Toxoid/pharmacology , Animals , Biosensing Techniques/methods , Female , Quality Control , Tetanus Toxoid/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...