Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Micron ; 174: 103532, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683551

ABSTRACT

CO2 mineralization in slag has gained significant attention since it occurs with minimal human intervention and energy input. While the amount of theoretical CO2 that can be captured within slag has been quantified based on slag composition in several studies, the microstructural and mineralogical effects of slag on its ability to capture CO2 have not been fully addressed. In this work, the CO2 uptake within legacy slag samples is analyzed through microstructural characterization. Slag samples were collected from the former Ravenscraig steelmaking site in Lanarkshire, Scotland. The collected samples were studied using X-ray Computed Tomography (XCT) to understand the distribution and geometry of pore space, as well as with scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) to visualize the distribution of elements within the studied samples. Electron backscatter diffraction (EBSD) was used to study the minerals distribution. The samples were also characterized through X-ray diffraction (XRD) and X-ray fluorescence (XRF), and the amount of captured CO2 was quantified using thermogravimetric analysis (TGA). Our results demonstrate that CO2 uptake occurs to the extent of ∼9-30 g CO2/ kg slag. The studied samples are porous in nature, with pore space occupying up to ∼30% of their volumes, and they are dominated by åkermanite-gehlenite minerals which interact with the atmospheric CO2 slowly at ambient conditions. EDS and EBSD results illustrate that the precipitated carbonate in slag is calcite, and that the precipitation of calcite is accompanied by the formation of a Si-O-rich layer. The provided analysis concludes that the porous microstructure as well as the minerals distribution in slag should be considered in forecasting and designing large-scale solutions for passive CO2 mineralization in slag.

2.
PLoS One ; 17(11): e0274285, 2022.
Article in English | MEDLINE | ID: mdl-36417346

ABSTRACT

The 'Roman emperor' Sponsian is known only from an assemblage of coins allegedly found in Transylvania (Romania) in 1713. They are very unlike regular Roman coins in style and manufacture, with various enigmatic features including bungled legends and historically mixed motifs, and have long been dismissed as poorly made forgeries. Here we present non-destructive imaging and spectroscopic results that show features indicative of authenticity. Deep micro-abrasion patterns suggest extensive circulation-wear. Superficial patches of soil minerals bound by authigenic cement and overlain by oxidation products indicate a history of prolonged burial then exhumation. These observations force a re-evaluation of Sponsian as a historical personage. Combining evidence from the coins with the historical record, we suggest he was most likely an army commander in the isolated Roman Province of Dacia during the military crisis of the 260s CE, and that his crudely manufactured coins supported a functioning monetary economy that persisted locally for an appreciable period.


Subject(s)
Burial , Numismatics , Male , Humans , Bone Cements , Commerce , Dental Materials
3.
Nat Commun ; 8: 14032, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128202

ABSTRACT

Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution-precipitation reactions. However, the microstructural consequences of dissolution-precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H2O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution-precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...