Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Nucl Sci ; 57(3): 1570-1576, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-21738262

ABSTRACT

We have explored methods for optimizing the timing resolution of an LSO-based detector module for a single-ring, "demonstration" time-of-flight PET camera. By maximizing the area that couples the scintillator to the PMT and minimizing the average path length that the scintillation photons travel, a single detector timing resolution of 218 ps fwhm is measured, which is considerably better than the ~385 ps fwhm obtained by commercial LSO or LYSO TOF detector modules. We explored different surface treatments (saw-cut, mechanically polished, and chemically etched) and reflector materials (Teflon tape, ESR, Lumirror, Melinex, white epoxy, and white paint), and found that for our geometry, a chemically etched surface had 5% better timing resolution than the saw-cut or mechanically polished surfaces, and while there was little dependence on the timing resolution between the various reflectors, white paint and white epoxy were a few percent better. Adding co-dopants to LSO shortened the decay time from 40 ns to ~30 ns but maintained the same or higher total light output. This increased the initial photoelectron rate and so improved the timing resolution by 15%. Using photomultiplier tubes with higher quantum efficiency (blue sensitivity index of 13.5 rather than 12) improved the timing resolution by an additional 5%. By choosing the optimum surface treatment (chemically etched), reflector (white paint), LSO composition (co-doped), and PMT (13.5 blue sensitivity index), the coincidence timing resolution of our detector module was reduced from 309 ps to 220 ps fwhm.

2.
Appl Biochem Biotechnol ; 63-65: 483-93, 1997.
Article in English | MEDLINE | ID: mdl-9170248

ABSTRACT

The performance of coimmobilized Saccharomyces cerevisiae and amyloglucosidase (AG) was evaluated in a fluidized-bed reactor. Soluble starch and yeast extracts were used as feed stocks. Conversion of soluble starch streams to ethanol has potential practical applications in corn dry and wet milling and in developmental lignocellulosic processes. The biocatalyst performed well, and demonstrated no significant loss of activity or physical integrity during 10 wk of continuous operation. The reactor was easily operated and required no pH control. No operational problems were encountered from bacterial contaminants even though the reactor was operated under nonsterile conditions over the entire course of experiments. Productivities ranged between 25 and 44 g ethanol/L/h/. The experiments demonstrated that ethanol inhibition and bed loading had significant effects on reactor performance.


Subject(s)
Ethanol/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Saccharomyces cerevisiae/metabolism , Bioreactors , Fermentation , Glucose/metabolism , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...