Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(745): eadj4685, 2024 May.
Article in English | MEDLINE | ID: mdl-38691617

ABSTRACT

Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.


Subject(s)
Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Vaccination , Animals , Influenza Vaccines/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Antibodies, Viral/immunology , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Antigens, Viral/immunology , Female , Mice, Inbred BALB C
2.
Annu Rev Virol ; 10(1): 261-282, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37774125

ABSTRACT

Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.


Subject(s)
Negative-Sense RNA Viruses , RNA Viruses , Humans , Negative-Sense RNA Viruses/genetics , RNA Viruses/genetics , RNA, Viral/genetics
3.
J Immunol ; 210(2): 148-157, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36458995

ABSTRACT

We previously reported monophosphoryl lipid A (MPL) and synthetic cord factor trehalose-6,6'-dicorynomycolate (TDCM) significantly increase Ab responses to T cell-independent type 2 Ags (TI-2 Ags) in a manner dependent on B cell-intrinsic TLR4 expression, as well as MyD88 and TRIF proteins. Given the capacity of MPL to drive type I IFN production, we aimed to investigate the extent to which type I IFN receptor (IFNAR) signaling was required for TI-2 responses and adjuvant effects. Using Ifnar1-/- mice and IFNAR1 Ab blockade, we found that IFNAR signaling is required for optimal early B cell activation, expansion, and Ab responses to nonadjuvanted TI-2 Ags, including the pneumococcal vaccine. Further study demonstrated that B cell-intrinsic type I IFN signaling on B cells was essential for normal TI-2 Ab responses. In particular, TI-2 Ag-specific B-1b cell activation and expansion were significantly impaired in Ifnar1-/- mice; moreover, IFNAR1 Ab blockade similarly reduced activation, expansion, and differentiation of IFNAR1-sufficient B-1b cells in Ifnar1-/- recipient mice, indicating that B-1b cell-expressed IFNAR supports TI-2 Ab responses. Consistent with these findings, type I IFN significantly increased the survival of TI-2 Ag-activated B-1b cells ex vivo and promoted plasmablast differentiation. Nonetheless, MPL/TDCM adjuvant effects, which were largely carried out through innate B cells (B-1b and splenic CD23- B cells), were independent of type I IFN signaling. In summary, our study highlights an important role for B-1b cell-expressed IFNAR in promoting responses to nonadjuvanted TI-2 Ags, but it nonetheless demonstrates that adjuvants which support innate B cell responses may bypass this requirement.


Subject(s)
Antibody Formation , B-Lymphocytes , Mice , Animals , Antigens , Polysaccharides , Receptors, Antigen, B-Cell , Adjuvants, Immunologic , Mice, Knockout , Mice, Inbred C57BL
4.
J Immunol ; 207(8): 1978-1989, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34535576

ABSTRACT

The inability of T cell-independent type 2 (TI-2) Ags to induce recall responses is a poorly understood facet of humoral immunity, yet critically important for improving vaccines. Using normal and VHB1-8 transgenic mice, we demonstrate that B cell-intrinsic PD-1 expression negatively regulates TI-2 memory B cell (Bmem) generation and reactivation in part through interacting with PDL1 and PDL2 on non-Ag-specific cells. We also identified a significant role for PDL2 expression on Bmems in inhibiting reactivation and Ab production, thereby revealing a novel self-regulatory mechanism exists for TI-2 Bmems This regulation impacts responses to clinically relevant vaccines, because PD-1 deficiency was associated with significantly increased Ab boosting to the pneumococcal vaccine after both vaccination and infection. Notably, we found a B cell-activating adjuvant enabled even greater boosting of protective pneumococcal polysaccharide-specific IgG responses when PD-1 inhibition was relieved. This work highlights unique self-regulation by TI-2 Bmems and reveals new opportunities for significantly improving TI-2 Ag-based vaccine responses.


Subject(s)
B-Lymphocytes/immunology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/metabolism , Homeostasis , Immunity, Humoral , Immunogenicity, Vaccine , Immunologic Memory , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Protein Binding , Signal Transduction
5.
J Immunol ; 205(9): 2362-2374, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32978280

ABSTRACT

The roles distinct B cell subsets play in clonal expansion, isotype switching, and memory B cell differentiation in response to T cell-independent type 2 Ags (TI-2 Ags) has been understudied. Using sorted B cells from VHB1-8 knock-in mice, we evaluated B-1b, marginal zone, and follicular B cell responses to the TI-2 Ag, NP-Ficoll. All subsets extensively divided in response to NP-Ficoll. Nonetheless, B-1b cells exhibited significantly increased IgG switching and differentiation into Ab-secreting cells (ASC)-a finding that coincided with increased AgR signaling capacity and Blimp1 expression by B-1b cells. All subsets formed memory cells and expressed markers previously identified for T cell-dependent memory B cells, including CD80, PDL2, and CD73, although B-1b cells generated the greatest number of memory cells with higher frequencies of IgG- and CD80-expressing cells. Despite memory formation, secondary immunization 4 wk after primary immunization did not increase NP-specific IgG. However, boosting occurred in B-1b cell-recipient mice when IgG levels declined. CD80+ memory B-1b cells divided, class switched, and differentiated into ASC in response to Ag in vivo, but this was inhibited in the presence of NP-specific IgG. Furthermore, CD80 blockade significantly increased memory B-1b cell division and differentiation to ASC upon Ag restimulation. Collectively, these findings demonstrate B-1b, marginal zone B, and follicular B subsets significantly contribute to the TI-2 Ag-specific memory B cell pool. In particular, we show B-1b cells generate a functional CD80-regulated memory population that can be stimulated to divide and differentiate into ASC upon Ag re-encounter when Ag-specific IgG levels decline.


Subject(s)
B-Lymphocyte Subsets/immunology , Immunologic Memory/immunology , T-Lymphocytes/immunology , Animals , Antigens, T-Independent/immunology , B7-1 Antigen/immunology , Cell Differentiation/immunology , Cell Division/immunology , Immunoglobulin Class Switching/immunology , Immunoglobulin G/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...