Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679721

ABSTRACT

This paper describes the process of developing a classification model for the effective detection of malignant melanoma, an aggressive type of cancer in skin lesions. Primary focus is given on fine-tuning and improving a state-of-the-art convolutional neural network (CNN) to obtain the optimal ROC-AUC score. The study investigates a variety of artificial intelligence (AI) clustering techniques to train the developed models on a combined dataset of images across data from the 2019 and 2020 IIM-ISIC Melanoma Classification Challenges. The models were evaluated using varying cross-fold validations, with the highest ROC-AUC reaching a score of 99.48%.


Subject(s)
Artificial Intelligence , Melanoma , Humans , Dermoscopy/methods , Melanoma/diagnosis , Neural Networks, Computer , Cluster Analysis , Melanoma, Cutaneous Malignant
2.
Sensors (Basel) ; 21(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200449

ABSTRACT

Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target's radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs.

3.
Sensors (Basel) ; 21(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673514

ABSTRACT

Intentional islanding is a corrective procedure that aims to protect the stability of the power system during an emergency, by dividing the grid into several partitions and isolating the elements that would cause cascading failures. This paper proposes a deep learning method to solve the problem of intentional islanding in an end-to-end manner. Two types of loss functions are examined for the graph partitioning task, and a loss function is added on the deep learning model, aiming to minimise the load-generation imbalance in the formed islands. In addition, the proposed solution incorporates a technique for merging the independent buses to their nearest neighbour in case there are isolated buses after the clusterisation, improving the final result in cases of large and complex systems. Several experiments demonstrate that the introduced deep learning method provides effective clustering results for intentional islanding, managing to keep the power imbalance low and creating stable islands. Finally, the proposed method is dynamic, relying on real-time system conditions to calculate the result.

SELECTION OF CITATIONS
SEARCH DETAIL
...