Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 157(4): 044306, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35922349

ABSTRACT

Using a magnetic bottle multi-electron time-of-flight spectrometer in combination with synchrotron radiation, double-core-hole pre-edge and continuum states involving the K-shell of the carbon atoms in n-butane (n-C4H10) have been identified, where the ejected core electron(s) and the emitted Auger electrons from the decay of such states have been detected in coincidence. An assignment of the main observed spectral features is based on the results of multi-configurational self-consistent field (MCSCF) calculations for the excitation energies and static exchange (STEX) calculations for energies and intensities. MCSCF results have been analyzed in terms of static and dynamic electron relaxation as well as electron correlation contributions to double-core-hole state ionization potentials. The analysis of applicability of the STEX method, which implements the one-particle picture toward the complete basis set limit, is motivated by the fact that it scales well toward large species. We find that combining the MCSCF and STEX techniques is a viable approach to analyze double-core-hole spectra.

3.
Nat Commun ; 13(1): 198, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017539

ABSTRACT

The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.

4.
Phys Rev Lett ; 127(9): 093201, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506185

ABSTRACT

Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared with He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.

5.
Sci Adv ; 6(31): eaba7762, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32789174

ABSTRACT

Shape resonances in physics and chemistry arise from the spatial confinement of a particle by a potential barrier. In molecular photoionization, these barriers prevent the electron from escaping instantaneously, so that nuclei may move and modify the potential, thereby affecting the ionization process. By using an attosecond two-color interferometric approach in combination with high spectral resolution, we have captured the changes induced by the nuclear motion on the centrifugal barrier that sustains the well-known shape resonance in valence-ionized N2. We show that despite the nuclear motion altering the bond length by only 2%, which leads to tiny changes in the potential barrier, the corresponding change in the ionization time can be as large as 200 attoseconds. This result poses limits to the concept of instantaneous electronic transitions in molecules, which is at the basis of the Franck-Condon principle of molecular spectroscopy.

6.
Sci Rep ; 10(1): 2288, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32042092

ABSTRACT

Double and triple ionisation spectra of the reactive molecule isocyanic acid (HNCO) have been measured using multi-electron and ion coincidence techniques combined with synchrotron radiation and compared with high-level theoretical calculations. Vertical double ionisation at an energy of 32.8 ± 0.3 eV forms the 3A" ground state in which the HNCO2+ ion is long lived. The vertical triple ionisation energy is determined as 65 ± 1 eV. The core-valence double ionisation spectra resemble the valence photoelectron spectrum in form, and their main features can be understood on the basis of a simple and rather widely applicable Coulomb model based on the characteristics of the molecular orbitals from which electrons are removed. Characteristics of the most important dissociation channels are examined and discussed.

7.
Sci Rep ; 10(1): 1246, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31988321

ABSTRACT

L-shell ionisation and subsequent Coulomb explosion of fully deuterated methyl iodide, CD3I, irradiated with hard X-rays has been examined by a time-of-flight multi-ion coincidence technique. The core vacancies relax efficiently by Auger cascades, leading to charge states up to 16+. The dynamics of the Coulomb explosion process are investigated by calculating the ions' flight times numerically based on a geometric model of the experimental apparatus, for comparison with the experimental data. A parametric model of the explosion, previously introduced for multi-photon induced Coulomb explosion, is applied in numerical simulations, giving good agreement with the experimental results for medium charge states. Deviations for higher charges suggest the need to include nuclear motion in a putatively more complete model. Detection efficiency corrections from the simulations are used to determine the true distributions of molecular charge states produced by initial L1, L2 and L3 ionisation.

8.
Sci Rep ; 9(1): 17883, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31784628

ABSTRACT

We present experimental results on the characteristic sharing of available excess energy, ranging from 11-221 eV, between two electrons in single-photon direct double ionization of He. An effective parametrization of the sharing distributions is presented along with an empirical model that describes the complete shape of the distribution based on a single experimentally determinable parameter. The measured total energy sharing distributions are separated into two distributions representing the shake-off and knock-out parts by simulating the sharing distribution curves expected from a pure wave collapse after a sudden removal of the primary electron. In this way, empirical knock-out distributions are extracted and both the shake-off and knock-out distributions are parametrized. These results suggest a simple method that can be applied to other atomic and molecular systems to experimentally study important aspects of the direct double ionization process.

9.
Phys Chem Chem Phys ; 21(19): 9889-9894, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31038513

ABSTRACT

Systematic measurements on single and triple Auger decay in CO and CO2 after the creation of a C 1s or a O 1s core vacancy show that the percentage of triple Auger decay is on the order of 10-2 of the single Auger decay in these molecules. The fractions of triple Auger decay are compared with triple Auger fractions for carbon atoms and some noble gas atoms, and are found to follow a linear trend correlated to the number of valence electrons on the atom with the initial core vacancy and on its closest neighbours. This linear trend for the percentage of triple Auger decay is represented by a predictive equation TA = 0.13·Nve - 0.5.

10.
J Chem Phys ; 149(20): 204307, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30501256

ABSTRACT

Energy selected and mass-resolved electron-ion coincidence spectra of heavy water have been recorded for ionization energies from 18 to 35 eV. Dissociation from the B2B2 state produces both O+ and D2 + at energies near their thermodynamic thresholds in addition to the known products D+ and OD+. The relative yields of O+, OD+, and D+ in the B2B2 state breakdown diagram are modulated by the vibrational structure of the B-state population, implying incomplete energy equilibration before fragmentation. Decay from the C-state produces OD+ in addition to the known O+ and D+. The fragment kinetic energies suggest that O+ and D+ from the C state are the products of full atomization of the molecule.

11.
Sci Rep ; 8(1): 16405, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30401877

ABSTRACT

Systematic measurements of electron emission following formation of single 1s or 2p core holes in molecules with C, O, F, Si, S and Cl atoms show that overall triple ionization can make up as much as 20% of the decay. The proportion of triple ionization is observed to follow a linear trend correlated to the number of available valence electrons on the atom bearing the initial core hole and on closest neighbouring atoms, where the interatomic distance is assumed to play a large role. The amounts of triple ionization (double Auger decay) after 1s or 2p core hole formation follow the same linear trend, which indicates that the hole identity is not a crucial determining factor in the number of electrons emitted. The observed linear trend for the percentage of double Auger decay follows a predictive line equation of the form DA = 0.415 · Nve + 5.46.

12.
Nat Commun ; 9(1): 63, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29302026

ABSTRACT

The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation-deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail.

13.
Science ; 358(6365): 893-896, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29097491

ABSTRACT

Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10-18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.

14.
Nat Commun ; 8: 15461, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28580940

ABSTRACT

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

15.
Nat Commun ; 8(1): 29, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28642477

ABSTRACT

Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method's impressive electronic structure sensitivity for excited-state investigations.Many photo-induced processes such as photosynthesis occur in organic molecules, but their femtosecond excited-state dynamics are difficult to track. Here, the authors exploit the element and site selectivity of soft X-ray absorption to sensitively follow the ultrafast ππ*/nπ* electronic relaxation of hetero-organic molecules.

16.
Phys Chem Chem Phys ; 18(36): 25705-25710, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711372

ABSTRACT

We show that the proportion of double Auger decay following creation of single 1s core holes in molecules containing C, N and O atoms is greater than usually assumed, amounting to about 10% of single Auger decay in many cases. It varies from molecule to molecule, where the size of the molecule has a positive correlation to the amount of double Auger decay. In neon, examined as a related benchmark, the proportion of double Auger decay is similar to that in methane, and is in the order of 5%.

17.
J Chem Phys ; 145(7): 074303, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27544101

ABSTRACT

The fragmentations of iodine cyanide ions created with 2 to 8 positive charges by photoionization from inner shells with binding energies from 59 eV (I 4d) to ca. 900 eV (I 3p) have been examined by multi-electron and multi-ion coincidence spectroscopy with velocity map imaging ion capability. The charge distributions produced by hole formation in each shell are characterised and systematic effects of the number of charges and of initial charge localisation are found.

18.
Phys Chem Chem Phys ; 18(4): 2535-47, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26700657

ABSTRACT

Core-valence double ionisation spectra of acetaldehyde (ethanal) are presented at photon energies above the carbon and oxygen 1s ionisation edges, measured by a versatile multi-electron coincidence spectroscopy technique. We use this molecule as a testbed for analyzing core-valence spectra by means of quantum chemical calculations of transition energies. These theoretical approaches range from two simple models, one based on orbital energies corrected by core valence interaction and one based on the equivalent core approximation, to a systematic series of quantum chemical electronic structure methods of increasing sophistication. The two simple models are found to provide a fast orbital interpretation of the spectra, in particular in the low energy parts, while the coverage of the full spectrum is best fulfilled by correlated models. CASPT2 is the most sophisticated model applied, but considering precision as well as computational costs, the single and double excitation configuration interaction model seems to provide the best option to analyze core-valence double hole spectra.

19.
Nat Commun ; 5: 4281, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24969734

ABSTRACT

Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.


Subject(s)
Fullerenes , Molecular Dynamics Simulation , X-Rays , Explosions , Lasers
20.
J Chem Phys ; 140(18): 184305, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24832268

ABSTRACT

Multi-coincidence experiments with detection of both electrons and ions from decay of core-excited and core-ionized states of CO2 confirm that O2(+) is formed specifically in Auger decay from the C1s-π* and O1s-π* resonances. Molecular rearrangement occurs by bending in the resonant states, and O2(+) is produced by both single and double Auger decay. It is suggested that electron capture by C(+) after partial dissociation in the doubly ionized core of excited CO2(+), formed by shake-up in spectator resonant Auger decay, accounts for high kinetic energy and high internal energy in some C + O2(+) fragments.

SELECTION OF CITATIONS
SEARCH DETAIL
...