Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 46(8): 683-702, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26586303

ABSTRACT

1. GSK2140944 is a novel bacterial topoisomerase inhibitor in development for the treatment of bacterial infections. The metabolism and disposition in healthy human subjects was investigated. 2. Six male subjects received [(14)C] GSK2140944 orally (2000 mg) and as a single 2-hour i.v. infusion (1000 mg). Urinary elimination (59%) was major by the i.v. route, whereas fecal elimination (53%) pre-dominated via the oral route. Accelerator mass spectrometry (AMS) was used for the analysis of plasma and bile samples due to the low level of radioactivity in samples (low specific activity of the doses). Unchanged GSK2140944 was the predominant circulating component (>60% DRM), with the main circulating metabolite M4 formed by oxidation of the triazaacenaphthylene moiety representing 10.8% (considered major) and 8.6% drug-related material by the oral and i.v. route, respectively. Approximately 50% of the oral dose was absorbed and eliminated mainly as unchanged GSK2140944 in urine (∼20% of dose). Elimination via metabolism (∼13% of dose) was relatively minor. The facile oxidation of GSK2140944 to metabolite M4 was believed to be a result of activation by adjacent electron withdrawing groups. 3. This study demonstrates the use of AMS to overcome radioprofiling challenges presented by low specific activity resulted from high doses administration.


Subject(s)
Acenaphthenes/metabolism , Anti-Bacterial Agents/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , Topoisomerase Inhibitors/metabolism , Acenaphthenes/urine , Adult , Anti-Bacterial Agents/urine , Healthy Volunteers , Heterocyclic Compounds, 3-Ring/urine , Humans , Male , Tissue Distribution , Topoisomerase Inhibitors/urine
2.
Bioanalysis ; 3(2): 197-213, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21250848

ABSTRACT

Understanding the metabolism of a novel drug candidate in drug discovery and drug development is as important today as it was 30 years ago. What has changed in this period is the technology available for proficient metabolite characterization from complex biological sources. High-efficiency chromatography, sensitive MS and information-rich NMR spectroscopy are approaches that are now commonplace in the modern laboratory. These advancements in analytical technology have led to unequivocal metabolite identification often being performed at the earliest opportunity, following the first dose to man. For this reason an alternative approach is to shift from predicting and extrapolating possible human metabolism from in silico and nonclinical sources, to actual characterization at steady state within early clinical trials. This review provides an overview of modern approaches for characterizing drug metabolites in these early clinical studies. Since much of this progress has come from technology development over the years, the review is concluded with a forward-looking perspective on how this progression may continue into the next decade.


Subject(s)
Body Fluids/chemistry , Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid/methods , Drugs, Investigational/analysis , Drugs, Investigational/metabolism , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Body Fluids/metabolism , Chromatography , Drug Discovery , Electronic Data Processing , Humans , Sensitivity and Specificity
3.
Chem Res Toxicol ; 23(1): 89-98, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19928877

ABSTRACT

The potent renal carcinogenicity of ochratoxin A (OTA) in rats, principally in the male, raises questions about mechanism. Chromatographic evidence of DNA adducts after (32)P-postlabeling analysis contrasts with experimental attempts to demonstrate the absence of OTA in such adducts. Proffered schemes for alternative epigenetic mechanisms in OTA carcinogenicity remain unsatisfying, while structural data substantiating DNA-OTA adducts has also been lacking. We report refined (32)P-postlabeling methodology revealing one principal adduct isolated in small amounts from the kidneys of all five Fischer and five Dark Agouti rats to which OTA had been given on four consecutive days. We also describe structural data for the principal adduct from OTA/DNA interaction in vitro and its subsequent preparative isolation by the postlabeling methodology (as C-C8 OTA 3'dGMP), essentially creating an ochratoxin B-guanine adduct. Reasoning for the unsuitability of experimental protocols in published evidence claiming nongenotoxicity of OTA is given. In vivo exposure of renal DNA to cycles of adduction with OTA, necessarily protracted for carcinogenesis to occur, can reasonably explain an occasional focal neoplasm from which metastasizing carcinoma could develop.


Subject(s)
Carcinogens/toxicity , DNA Adducts/chemistry , Ochratoxins/toxicity , Animals , Chromatography, High Pressure Liquid , DNA Adducts/isolation & purification , DNA Adducts/toxicity , Humans , Kidney/pathology , Male , Phosphorus Radioisotopes , Rats , Risk Assessment , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...