Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(25): 17519-17525, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38818358

ABSTRACT

Single particle levitation techniques allow us to probe samples in a contactless way, negating the effect that surfaces could have on processes such as crystallisation and phase transitions. Small-angle X-ray scattering (SAXS) is a common method characterising the nanoscale order in aggregates such as colloidal, crystalline and liquid crystalline systems. Here, we present a laboratory-based small-angle X-ray scattering (SAXS) setup combined with acoustic levitation. The capability of this technique is highlighted and compared with synchrotron-based levitation-SAXS and X-ray diffraction. We were able to follow the deliquescence and crystallisation of sucrose, a commonly used compound for the study of viscous atmospheric aerosols. The observed increased rate of the deliquescence-crystallisation transitions on repeated cycling could suggest the formation of a glassy sucrose phase. We also followed a reversible phase transition in an oleic acid-based lyotropic liquid crystal system under controlled humidity changes. Our results demonstrate that the coupling of acoustic levitation with an offline SAXS instrument is feasible, and that the time resolution and data quality are sufficient to draw physically meaningful conclusions. There is a wide range of potential applications including topics such as atmospheric aerosol chemistry, materials science, crystallisation and aerosol spray drying.

2.
ACS Appl Mater Interfaces ; 16(15): 19585-19593, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579106

ABSTRACT

We present the development of time-programmable functional soft materials. The materials undergo reversible phase transitions between lyotropic phases with different topologies and symmetries, which in turn have very different physical properties: viscosity, diffusion, and optical transparency. Here, this behavior is achieved by combining pH-responsive lyotropic phases made from the lipid monoolein doped with 10% oleic acid, with chemical reactions that have well-defined controllable kinetics: autocatalytic urea-urease and methyl formate hydrolysis, which increase and decrease pH, respectively. In this case, we use small-angle X-ray scattering (SAXS) and optical imaging to show temporally controlled transitions between the cloudy hexagonal phase, which is a two-dimensional (2D) array of cylindrical inverse micelles, and the transparent, highly viscous three-dimensional (3D) bicontinuous cubic phases. By combining these into a single reaction mixture where the pH increases and then decreases again, we can induce a sequential transformation cycle from hexagonal to cubic and back to hexagonal over several hours. The sample therefore changes from cloudy to transparent and back again as a proof-of-concept demonstration for a wider range of soft materials with time-programmable changes in physical properties.

3.
Langmuir ; 40(1): 170-178, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38113389

ABSTRACT

Enzyme-based electrochemical biosensors play an important role in point-of-care diagnostics for personalized medicine. For such devices, lipid cubic phases (LCP) represent an attractive method to immobilize enzymes onto conductive surfaces with no need for chemical linking. However, research has been held back by the lack of effective strategies to stably co-immobilize enzymes with a redox shuttle that enhances the electrical connection between the enzyme redox center and the electrode. In this study, we show that a monoolein (MO) LCP system doped with an amphiphilic redox mediator (ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) can be used for enzyme immobilization to generate an effective biosensing platform. Small-angle X-ray scattering (SAXS) showed that MO LCP can incorporate Fc12 while maintaining the Pn3m symmetry morphology. Cyclic voltammograms of Fc12/MO showed quasi-reversible behavior, which implied that Fc12 was able to freely diffuse in the lipid membrane of LCP with a diffusion coefficient of 1.9 ± 0.2 × 10-8 cm2 s-1 at room temperature. Glucose oxidase (GOx) was then chosen as a model enzyme and incorporated into 0.2%Fc12/MO to evaluate the activity of the platform. GOx hosted in 0.2%Fc12/MO followed Michaelis-Menten kinetics toward glucose with a KM and Imax of 8.9 ± 0.5 mM and 1.4 ± 0.2 µA, respectively, and a linearity range of 2-17 mM glucose. Our results therefore demonstrate that GOx immobilized onto 0.2% Fc12/MO is a suitable platform for the electrochemical detection of glucose.


Subject(s)
Biosensing Techniques , Glucose , Scattering, Small Angle , X-Ray Diffraction , Oxidation-Reduction , Glucose Oxidase/metabolism , Enzymes, Immobilized/metabolism , Biosensing Techniques/methods , Electrodes
4.
Acc Chem Res ; 56(19): 2555-2568, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37688543

ABSTRACT

ConspectusAerosols are ubiquitous in the atmosphere. Outdoors, they take part in the climate system via cloud droplet formation, and they contribute to indoor and outdoor air pollution, impacting human health and man-made environmental change. In the indoor environment, aerosols are formed by common activities such as cooking and cleaning. People can spend up to ca. 90% of their time indoors, especially in the western world. Therefore, there is a need to understand how indoor aerosols are processed in addition to outdoor aerosols.Surfactants make significant contributions to aerosol emissions, with sources ranging from cooking to sea spray. These molecules alter the cloud droplet formation potential by changing the surface tension of aqueous droplets and thus increasing their ability to grow. They can also coat solid surfaces such as windows ("window grime") and dust particles. Such surface films are more important indoors due to the higher surface-to-volume ratio compared to the outdoor environment, increasing the likelihood of surface film-pollutant interactions.A common cooking and marine emission, oleic acid, is known to self-organize into a range of 3-D nanostructures. These nanostructures are highly viscous and as such can impact the kinetics of aerosol and film aging (i.e., water uptake and oxidation). There is still a discrepancy between the longer atmospheric lifetime of oleic acid compared with laboratory experiment-based predictions.We have created a body of experimental and modeling work focusing on the novel proposition of surfactant self-organization in the atmosphere. Self-organized proxies were studied as nanometer-to-micrometer films, levitated droplets, and bulk mixtures. This access to a wide range of geometries and scales has resulted in the following main conclusions: (i) an atmospherically abundant surfactant can self-organize into a range of viscous nanostructures in the presence of other compounds commonly encountered in atmospheric aerosols; (ii) surfactant self-organization significantly reduces the reactivity of the organic phase, increasing the chemical lifetime of these surfactant molecules and other particle constituents; (iii) while self-assembly was found over a wide range of conditions and compositions, the specific, observed nanostructure is highly sensitive to mixture composition; and (iv) a "crust" of product material forms on the surface of reacting particles and films, limiting the diffusion of reactive gases to the particle or film bulk and subsequent reactivity. These findings suggest that hazardous, reactive materials may be protected in aerosol matrixes underneath a highly viscous shell, thus extending the atmospheric residence times of otherwise short-lived species.

5.
Soft Matter ; 19(34): 6569-6577, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37603381

ABSTRACT

The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.

6.
ACS Nano ; 16(12): 20497-20509, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36441928

ABSTRACT

Hierarchical self-assembly is an effective means of preparing useful materials. However, control over assembly across length scales is a difficult challenge, often confounded by the perceived need to redesign the molecular building blocks when new material properties are needed. Here, we show that we can treat a simple dipeptide building block as a polyelectrolyte and use polymer physics approaches to explain the self-assembly over a wide concentration range. This allows us to determine how entangled the system is and therefore how it might be best processed, enabling us to prepare interesting analogues to threads and webs, as well as films that lose order on heating and "noodles" which change dimensions on heating, showing that we can transfer micellar-level changes to bulk properties all from a single building block.

7.
J Phys Chem A ; 126(40): 7331-7341, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36169656

ABSTRACT

The composition of atmospheric aerosols varies with time, season, location, and environment. This affects key aerosol properties such as hygroscopicity and reactivity, influencing the aerosol's impact on the climate and air quality. The organic fraction of atmospheric aerosol emissions often contains surfactant material, such as fatty acids. These molecules are known to form three-dimensional nanostructures in contact with water. Different nanostructures have marked differences in viscosity and diffusivity that are properties whose understanding is essential when considering an aerosol's atmospheric impact. We have explored a range of nanostructures accessible to the organic surfactant oleic acid (commonly found in cooking emissions), simulating variation that is likely to happen in the atmosphere. This was achieved by changing the amount of water, aqueous phase salinity and by addition of other commonly coemitted compounds: sugars and stearic acid (the saturated analogue of oleic acid). The nanostructure was observed by both synchrotron and laboratory small/wide angle X-ray scattering (SAXS/WAXS) and found to be sensitive to the proxy composition. Additionally, the spacing between repeat units in these nanostructures was water content dependent (i.e., an increase from 41 to 54 Šin inverse hexagonal phase d-spacing when increasing the water content from 30 to 50 wt %), suggesting incorporation of water within the nanostructure. A significant decrease in mixture viscosity was also observed with increasing water content from ∼104 to ∼102 Pa s when increasing the water content from 30 to 60 wt %. Time-resolved SAXS experiments on levitated droplets of this proxy confirm the phase changes observed in bulk phase mixtures and demonstrate that coexistent nanostructures can form in droplets. Aerosol compositional and subsequent nanostructural changes could affect aerosol processes, leading to an impact on the climate and urban air pollution.


Subject(s)
Nanostructures , Surface-Active Agents , Aerosols/chemistry , Fatty Acids , Oleic Acids , Scattering, Small Angle , Stearic Acids , Sugars , Water/chemistry , X-Ray Diffraction
9.
Nanotechnology ; 33(19)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35081522

ABSTRACT

In this work, we developed a lipid mixture based on phytantriol / polyoxyethylene surfactant (Brij-56) that forms aIm3msymmetry bicontinuous cubic phase based on the Schwartz primitive surface (QIIP), from which we templated highly ordered 3D nanoporous platinum with a novel 'single primitive' morphology (Pm3msymmetry). TheQIIPtemplate phase is obtained by incorporation of 17.5% w/w Brij-56 (C16EO10) (a type-I surfactant) into phytantriol under excess hydration conditions. Phytantriol alone forms the double diamondQIID(Pn3m) phase, and in previous studies incorporating Brij-56 at different compositions the cubic phase maintained this morphology, but increased its lattice parameter; mesoporous metals templated from theseQIIDlipid templates all exhibited the 'single diamond' (Fd3m) morphology. In contrast, the current paper presents the availability of ourQIIPcubic phases to template nanoporous materials of single primitivePm3mmorphology via chemical and electrochemical methods. To explore the structure porosity and morphological features of the templated Pt material, x-ray scattering and transmission electron microscopy are used. The resulting 3D nanoporous Pt materials are found to exhibit a regular network of Pt nanowires of âˆ¼4 nm in diameter with a unit cell dimension of 14.8 ± 0.8 nm, reflecting the aqueous network within theQIIPtemplate.

11.
RSC Chem Biol ; 2(4): 1232-1238, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34458836

ABSTRACT

We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml-1 seeds in 2.5 mg ml-1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min-1, and an average seed length estimate of 4.2 ± 1.3 µm.

12.
Faraday Discuss ; 226: 364-381, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33284926

ABSTRACT

Cooking emissions account for a significant proportion of the organic aerosols emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain after extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form and inhibit reaction progress - effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure the reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 µm with films <10 µm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.


Subject(s)
Microscopy , Ozone , Aerosols , Cities , Cooking , Kinetics , Scattering, Small Angle , X-Ray Diffraction , X-Rays
13.
ACS Appl Bio Mater ; 3(1): 512-521, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-35019394

ABSTRACT

Bacteriophage material (M13, wild-type) deposited as a film onto a poly(ethylene terephthalate) (PET) substrate (6 µm thick with a 20 µm diameter laser-drilled microhole) has been investigated for ion conductivity and ionic current rectification effects for potential applications in membranes. The M13 aggregate membrane forms under acidic conditions (in aqueous 10 mM acids) and behaves like a microporous anion conductor with micropores defined by the packing of cylindrical virus particles. Asymmetric deposition on the PET film substrate in conjunction with semipermeability leads to anionic diode behavior. Typical rectification ratio values are around 10 (determined at ±1 V) in aqueous 10 mM acids. Cationic guest species (aqueous Cu2+, Co2+, Ag+) consistently lead to a rectification minimum at 0.5 mM guest concentration. In contrast, anionic guest species (indigo carmine) lead to a similar rectification minimum already at 5 µM concentration. The behavior is proposed to be associated with cation exclusion effects on transport.

14.
ACS Appl Mater Interfaces ; 10(43): 37087-37094, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30289235

ABSTRACT

Fuel cells are a key new green technology that have applications in both transport and portable power generation. Carbon-supported platinum (Pt) is used as an anode and cathode electrocatalyst in low-temperature fuel cells fueled with hydrogen or low-molecular-weight alcohols. The cost of Pt and the limited world supply are significant barriers to the widespread use of these types of fuel cells. Comparatively, palladium has a 3 times higher abundance in the Earth's crust. Here, a facile, low-temperature, and scalable synthetic route toward three-dimensional nanostructured palladium (Pd) employing electrochemical templating from inverse lyotropic lipid phases is presented. The obtained single diamond morphology Pd nanostructures exhibited excellent catalytic activity and stability toward methanol, ethanol, and glycerol oxidation compared to commercial Pd black, and the nanostructure was verified by small-angle X-ray scattering, scanning tunneling electron microscopy, and cyclic voltammetry.

15.
Langmuir ; 34(24): 6991-6996, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29782804

ABSTRACT

We present an attractive method for the fabrication of long, straight, highly crystalline, ultrathin platinum nanowires. The fabrication is simply achieved using an inverse hexagonal (HII) lyotropic liquid crystal phase of the commercial surfactant phytantriol as a template. A platinum precursor dissolved within the cylindrical aqueous channels of the liquid crystal phase is chemically reduced by galvanic displacement using stainless steel. We demonstrate the production of nanowires using the HII phase in the phytantriol/water system which we obtain either by heating to 55 °C or at room temperature by the addition of a hydrophobic liquid, 9- cis-tricosene, to relieve packing frustration. The two sets of conditions produced high aspect nanowires with diameters of 2.5 and 1.7 nm, respectively, at least hundreds of nanometers in length, matching the size of the aqueous channels in which they grow. This versatile approach can be extended to produce highly uniform nanowires from a range of metals.

16.
Eur J Pharm Sci ; 101: 31-42, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28137471

ABSTRACT

From the last couple of decades, lyotropic liquid crystals have garnered enormous attentions in medical and pharmaceutical sciences. Non-toxic, chemically stable, and biocompatible properties of these liquid crystal systems are contributing to their applications for drug delivery. Among a large variety of liquid crystal phases, inverse bicontinuous cubic and inverse hexagonal mesophases have been extensively investigated for their ability to encapsulate and controlled release of bioactive molecules of various sizes and polarity. The concept of changing the drug release rate in situ by simply changing the mesophase structure is much more fascinating. The encapsulation of bioactive compounds in mesophase systems of desirable features in sub-micron sized particles such as hexosomes and cubosomes, at ambient and high temperature is bringing innovation in the development of new drug applications. This review article outlines unique structural features of cubosomes and hexosomes, their methods of productions, factors affecting their formations and their potential utilization as smart nano-carriers for biopharmaceuticals in drug delivery applications.


Subject(s)
Drug Carriers/chemistry , Fatty Alcohols/chemistry , Nanoparticles/chemistry , Drug Delivery Systems/methods , Drug Liberation , Liquid Crystals/chemistry , Particle Size
17.
Langmuir ; 32(19): 4917-23, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27089379

ABSTRACT

ß-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended ß-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity).


Subject(s)
Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Amino Acid Sequence , Gels , Models, Molecular , Protein Conformation, beta-Strand
18.
J Phys Chem Lett ; 7(7): 1341-5, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26979408

ABSTRACT

We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research.

19.
J Strength Cond Res ; 30(7): 1933-41, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26422610

ABSTRACT

Youdas, JW, Keith, JM, Nonn, DE, Squires, AC, and Hollman, JH. Activation of spinal stabilizers and shoulder complex muscles during an inverted row using a portable pull-up device and body weight resistance. J Strength Cond Res 30(7): 1933-1941, 2016-We recorded muscle activation normalized to a maximum voluntary isometric contraction (% MVIC) during an inverted body weight row using a commercially available portable pull-up device. Surface electromyographic (EMG) analysis was conducted on 13 male and 13 female subjects performing 4 inverted row exercises: (a) pronated grip both feet weight-bearing (WB); (b) supinated grip both feet WB; (c) pronated grip one leg WB; and (d) supinated grip single-leg WB. Nine muscles were analyzed: (a) posterior deltoid (PD), (b) latissimus dorsi (LD), (c) biceps brachii (BB), (d) lower trapezius (LT), (e) upper trapezius (UT), (f) lumbar multifidus (LM), (g) middle trapezius (MT), (h) lumbar thoracis (LTh), and (i) rectus abdominis (RA). Normalized peak EMG activity was examined separately for each muscle with 9 repeated measures analysis of variance (ANOVA) at α = 0.05. Post hoc comparisons of EMG activation across exercises for statistically significant ANOVAs were conducted with Bonferroni corrections for multiple comparisons. We observed statistically significant differences in EMG activation of the LD between supinated and pronated double-leg WB (p = 0.001) condition. Additionally, we found statistical significance in the UT between pronated and supinated single-leg WB (p = 0.007). No statistically significant differences in muscle activation existed between single- and double-leg WB in any muscles. Four muscles (BB, LD, LT, and PD) demonstrated very high (>61% MVIC) EMG activation during all 4 exercise conditions. Three muscles (UT, MT, and LM) demonstrated high (41-60% MVIC) activation, whereas 2 muscles (LTh and RA) demonstrated moderate (21-40% MVIC) activation. Four inverted row exercises activated the LD, UT, MT, LT, and BB at levels conducive to strengthening.


Subject(s)
Paraspinal Muscles/physiology , Resistance Training/methods , Superficial Back Muscles/physiology , Adult , Body Weight , Electromyography , Female , Forearm , Humans , Isometric Contraction , Lumbosacral Region , Male , Pronation/physiology , Resistance Training/instrumentation , Supination/physiology , Weight-Bearing/physiology , Young Adult
20.
ACS Nano ; 9(11): 10970-8, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26493862

ABSTRACT

We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (Lα), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...