Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 81(2-3): 179-88, 2000 Aug 25.
Article in English | MEDLINE | ID: mdl-10989177

ABSTRACT

Phenolic and nonphenolic (permethylated) synthetic [14C]lignins were depolymerized by Trametes villosa laccase in the presence of a radical mediator, 1-hydroxybenzotriazole (HOBT). Gel permeation chromatography of the treated lignins showed that approximately 10% of their substructures were cleaved. The system also cleaved a beta-O-4-linked model compound, 1-(4-ethoxy-3-methoxy-ring-[14C]phenyl)-2-(2-methoxyphenoxy)-propane- 1,3-diol, and a beta-1-linked model, 1, 2-bis-(3-methoxy-4-[14C]methoxyphenyl)-propane-1,3-diol, that represent nonphenolic substructures in lignin. High performance liquid chromatography of products from the oxidized models showed that they were produced in sufficient yields to account for the ability of laccase/HOBT to depolymerize nonphenolic lignin.


Subject(s)
Lignin/metabolism , Oxidoreductases/metabolism , Triazoles/metabolism , Dimerization , Laccase , Oxidation-Reduction , Polyporales/enzymology
2.
Biochem Biophys Res Commun ; 244(1): 233-8, 1998 Mar 06.
Article in English | MEDLINE | ID: mdl-9514895

ABSTRACT

Phenanthrene, a polycyclic aromatic hydrocarbon, was efficiently oxidized by laccase in the presence of both 1-hydroxybenzotriazole and unsaturated lipids. 73% of initially added phenanthrene was degraded within 182 hours to give phenanthrene-9,10-quinone and 2,2'-diphenic acid as the major products. The system was also able to peroxidize linoleic acid to its corresponding hydroperoxides suggesting the involvement of lipid peroxidation in laccase catalyzed phenanthrene oxidation. Lipid peroxidation by laccase required 1-hydroxybenzotriazole and did not depend on Mn2+ and H2O2 suggesting that the chemical reactions involved differ from those previously reported for manganese peroxidase.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Fungal Proteins/metabolism , Oxidoreductases/metabolism , Phenanthrenes/metabolism , Triazoles/metabolism , Basidiomycota/enzymology , Biphenyl Compounds/metabolism , Laccase , Linoleic Acid/metabolism , Lipid Peroxidation , Oxidation-Reduction
3.
Appl Environ Microbiol ; 63(2): 815, 1997 Feb.
Article in English | MEDLINE | ID: mdl-16535528

ABSTRACT

Vol. 62, no. 10, p. 3684, column 2, line 16: "Tri(methylsilyl)" should read "Tri(trimethylsilyl)." Line 17: "Di(methylsilyl)" should read "Di(trimethylsilyl)." Line 20: "Tri(methylsilyl)" should read "Trimethylsilyl." Page 3686, column 1, reference 12: The journal should be Dokl. Akad. Nauk Belarusi. [This corrects the article on p. 3679 in vol. 62.].

4.
Appl Environ Microbiol ; 63(11): 4435-40, 1997 Nov.
Article in English | MEDLINE | ID: mdl-16535732

ABSTRACT

The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.

5.
Appl Environ Microbiol ; 62(10): 3679-86, 1996 Oct.
Article in English | MEDLINE | ID: mdl-16535418

ABSTRACT

Many ligninolytic fungi appear to lack lignin peroxidase (LiP), the enzyme generally thought to cleave the major, recalcitrant, nonphenolic structures in lignin. At least one such fungus, Ceriporiopsis subvermispora, is nevertheless able to degrade these nonphenolic structures. Experiments showed that wood block cultures and defined liquid medium cultures of C. subvermispora rapidly depolymerized and mineralized a (sup14)C-labeled, polyethylene glycol-linked, high-molecular-weight (beta)-O-4 lignin model compound (model I) that represents the major nonphenolic structure of lignin. The fungus cleaved model I between C(inf(alpha)) and C(inf(beta)) to release benzylic fragments, which were shown in isotope trapping experiments to be major products of model I metabolism. The C(inf(alpha))-C(inf(beta)) cleavage of (beta)-O-4 lignin structures to release benzylic fragments is characteristic of LiP catalysis, but assays of C. subvermispora liquid cultures that were metabolizing model I confirmed that the fungus produced no detectable LiP activity. Three results pointed, instead, to the participation of a different enzyme, manganese peroxidase (MnP), in the degradation of nonphenolic lignin structures by C. subvermispora. (i) The degradation of model I and of exhaustively methylated (nonphenolic), (sup14)C-labeled, synthetic lignin by the fungus in liquid cultures was almost completely inhibited when the Mn concentration of the medium was decreased from 35 (mu)M to approximately 5 (mu)M. (ii) The fungus degraded model I and methylated lignin significantly faster in the presence of Tween 80, a source of unsaturated fatty acids, than it did in the presence of Tween 20, which contains only saturated fatty acids. Previous work has shown that nonphenolic lignin structures are degraded during the MnP-mediated peroxidation of unsaturated lipids. (iii) In experiments with MnP, Mn(II), and unsaturated lipid in vitro, this system mimicked intact C. subvermispora cultures in that it cleaved nonphenolic (beta)-O-4 lignin model compounds between C(inf(alpha)) and C(inf(beta)) to release a benzylic fragment.

6.
Proc Natl Acad Sci U S A ; 91(26): 12794-7, 1994 Dec 20.
Article in English | MEDLINE | ID: mdl-11607502

ABSTRACT

Lignin peroxidases (LiPs) are likely catalysts of ligninolysis in many white-rot fungi, because they have the unusual ability to depolymerize the major, recalcitrant, non-phenolic structures of lignin. Some white-rot fungi have been reported to lack LiP when grown on defined medium, but it is not clear whether they exhibit full ligninolytic competence under these conditions. To address this problem, we compared the abilities of a known LiP producer, Phanerochaete chrysosporium, with those of a reported nonproducer, Ceriporiopsis subvermispora, to degrade a synthetic lignin with normal phenolic content, a lignin with all phenolic units blocked, and a dimer, 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol, that represents the major nonphenolic structure in lignin. P. chrysosporium mineralized all three models rapidly in defined medium, but C. subvermispora showed appreciable activity only toward the more labile phenolic compound under these conditions. However, in wood, its natural environment, C. subvermispora mineralized all of the models as rapidly as P. chrysosporium did. Defined media therefore fail to elicit a key component of the ligninolytic system in C. subvermispora. A double-labeling experiment with the dimeric model showed that a LiP-dependent pathway was responsible for at least half of dimer mineralization in wood by P. chrysosporium but was responsible for no more than 6-7% of mineralization by C. subvermispora in wood. Therefore, C. subvermispora has mechanisms for degradation of nonphenolic lignin that are as efficient as those in P. chrysosporium but that do not depend on LiP.

7.
Appl Environ Microbiol ; 60(4): 1383-6, 1994 Apr.
Article in English | MEDLINE | ID: mdl-16349245

ABSTRACT

CRYOSTAT MICROTOME SECTIONS OF BIRCH WOOD DEGRADED BY WHITE ROT FUNGI WERE EXAMINED BY LIGHT MICROSCOPY AFTER TREATMENT WITH TWO STAINS: astra-blue, which stains cellulose blue only in the absence of lignin, and safranin, which stains lignin regardless of whether cellulose is present. The method provided a simple and reliable screening procedure that distinguishes between fungi that cause decay by selectively removing lignin and those that degrade both cellulose and lignin simultaneously. Moreover, morphological characteristics specific to selective delignification were revealed.

8.
Biochem Biophys Res Commun ; 178(3): 1092-8, 1991 Aug 15.
Article in English | MEDLINE | ID: mdl-1872832

ABSTRACT

Phanerochaete chrysosporium was able to degrade high molecular weight chlorolignins (Mr greater than 30,000) from bleach plant effluents, although a direct contact between ligninolytic enzymes and chlorolignin was prevented by a dialysis tubing. In the absence of the enzymes, Mn3+ depolymerized chlorolignin when complexed with lactate causing the color, chemical oxygen demand (COD) and dry weight to decrease by 80%, 60% and 40%, respectively. Manganese peroxidase effectively catalyzed the depolymerization of chlorolignin in the presence of Mn2+ and H2O2. It can be concluded from these results that manganese peroxidase plays the major role in the initial breakdown and decolorization of high molecular weight chlorolignin in bleach plant effluents by P. chrysosporium in vivo.


Subject(s)
Agaricales/enzymology , Lignin/metabolism , Peroxidases/metabolism , Chromatography, Gel , Kinetics , Manganese/metabolism , Manganese/pharmacology
9.
Appl Environ Microbiol ; 54(11): 2608-14, 1988 Nov.
Article in English | MEDLINE | ID: mdl-16347765

ABSTRACT

The penetration of enzymes into wood cell walls during white rot decay is an open question. A postembedding immunoelectron microscopic technique was the method of choice to answer that question. Infiltration of pine wood specimens with a concentrated culture filtrate greatly improved the labeling density and, thereby, reproducibility. Characterization of the concentrated culture filtrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) revealed three closely spaced proteins of molecular weights about 42,000 showing immunoreactivity against anti-lignin peroxidase serum. It was shown by immunogold labeling that lignin peroxidase of Phanerochaete chrysosporium is located on the surface of the wood cell wall or within areas of heavy attack. It did not diffuse into undecayed parts of the cell wall. The reasons for preventing lignin peroxidase from penetrating wood cell walls during white rot decay are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...