Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Neurol Genet ; 5(1): e307, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30842974

ABSTRACT

OBJECTIVE: To elucidate the genetic cause of a large 5 generation South Indian family with multiple individuals with predominantly an upper limb postural tremor and posturing in keeping with another form of tremor, namely, dystonic tremor. METHODS: Whole-genome single nucleotide polymorphism (SNP) microarray analysis was undertaken to look for copy number variants in the affected individuals. RESULTS: Whole-genome SNP microarray studies identified a tandem duplicated genomic segment of chromosome 15q24 present in all affected family members. Whole-genome sequencing demonstrated that it comprised a ∼550-kb tandem duplication encompassing the entire LINGO1 gene. CONCLUSIONS: The identification of a genomic duplication as the likely molecular cause of this condition, resulting in an additional LINGO1 gene copy in affected cases, adds further support for a causal role of this gene in tremor disorders and implicates increased expression levels of LINGO1 as a potential pathogenic mechanism.

2.
Hum Mutat ; 37(11): 1157-1161, 2016 11.
Article in English | MEDLINE | ID: mdl-27492651

ABSTRACT

Hereditary spastic paraplegias (HSPs) are genetically and clinically heterogeneous axonopathies primarily affecting upper motor neurons and, in complex forms, additional neurons. Here, we report two families with distinct recessive mutations in TFG, previously suggested to cause HSP based on findings in a single small family with complex HSP. The first carried a homozygous c.317G>A (p.R106H) variant and presented with pure HSP. The second carried the same homozygous c.316C>T (p.R106C) variant previously reported and displayed a similarly complex phenotype including optic atrophy. Haplotyping and bisulfate sequencing revealed evidence for a c.316C>T founder allele, as well as for a c.316_317 mutation hotspot. Expression of mutant TFG proteins in cultured neurons revealed mitochondrial fragmentation, the extent of which correlated with clinical severity. Our findings confirm the causal nature of bi-allelic TFG mutations for HSP, broaden the clinical and mutational spectra, and suggest mitochondrial impairment to represent a pathomechanistic link to other neurodegenerative conditions.


Subject(s)
Mutation, Missense , Proteins/genetics , Proteins/metabolism , Spastic Paraplegia, Hereditary/pathology , Animals , Cells, Cultured , Female , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging/methods , Male , Mice , Mitochondria/pathology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Pedigree , Sequence Analysis, DNA , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism
3.
BMC Med Genet ; 16: 104, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26554554

ABSTRACT

BACKGROUND: The deletion of the chromosome 4p16.3 Wolf-Hirschhorn syndrome critical region (WHSCR-2) typically results in a characteristic facial appearance, varying intellectual disability, stereotypies and prenatal onset of growth retardation, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of distal chromosome 3p (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance. METHODS AND RESULTS: We investigated a large Indian five-generation pedigree with ten affected family members in which chromosomal microarray and fluorescence in situ hybridization analyses disclosed a complex rearrangement involving chromosomal subregions 4p16.1 and 3p26.3 resulting in a 4p16.1 deletion and 3p26.3 microduplication in three individuals, and a 4p16.1 duplication and 3p26.3 microdeletion in seven individuals. A typical clinical presentation of WHS was observed in all three cases with 4p16.1 deletion and 3p26.3 microduplication. Individuals with a 4p16.1 duplication and 3p26.3 microdeletion demonstrated a range of clinical features including typical 3p microdeletion or 4p partial trisomy syndrome to more severe neurodevelopmental delay with distinct dysmorphic features. CONCLUSION: We present the largest pedigree with complex t(4p;3p) chromosomal rearrangements and diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome amongst affected individuals.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 4 , Chromosome Disorders/etiology , Developmental Disabilities/genetics , Female , Humans , In Situ Hybridization, Fluorescence , India , Male , Oligonucleotide Array Sequence Analysis , Pedigree , Sequence Deletion , Trisomy , Wolf-Hirschhorn Syndrome/genetics
4.
Nat Genet ; 47(7): 814-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26005865

ABSTRACT

The major pathway by which the brain obtains essential omega-3 fatty acids from the circulation is through a sodium-dependent lysophosphatidylcholine (LPC) transporter (MFSD2A), expressed in the endothelium of the blood-brain barrier. Here we show that a homozygous mutation affecting a highly conserved MFSD2A residue (p.Ser339Leu) is associated with a progressive microcephaly syndrome characterized by intellectual disability, spasticity and absent speech. We show that the p.Ser339Leu alteration does not affect protein or cell surface expression but rather significantly reduces, although not completely abolishes, transporter activity. Notably, affected individuals displayed significantly increased plasma concentrations of LPCs containing mono- and polyunsaturated fatty acyl chains, indicative of reduced brain uptake, confirming the specificity of MFSD2A for LPCs having mono- and polyunsaturated fatty acyl chains. Together, these findings indicate an essential role for LPCs in human brain development and function and provide the first description of disease associated with aberrant brain LPC transport in humans.


Subject(s)
Fatty Acids, Omega-3/metabolism , Microcephaly/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Base Sequence , Biological Transport , Blood-Brain Barrier/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Genetic Association Studies , HEK293 Cells , Humans , Infant , Lysophosphatidylcholines/blood , Male , Microcephaly/blood , Mutation, Missense , Pedigree , Sequence Analysis, DNA , Symporters , Syndrome
5.
J Clin Invest ; 124(7): 3137-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24911150

ABSTRACT

Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA's interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration.


Subject(s)
DNA Repair-Deficiency Disorders/genetics , Mutant Proteins/genetics , Mutation, Missense , Proliferating Cell Nuclear Antigen/genetics , Adolescent , Adult , Aging, Premature/genetics , Amino Acid Substitution , Child , Chromosomes, Human, Pair 20/genetics , DNA Mutational Analysis , DNA Repair-Deficiency Disorders/pathology , DNA Repair-Deficiency Disorders/physiopathology , Dwarfism/genetics , Female , Hearing Loss/genetics , Homozygote , Humans , Male , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nerve Degeneration/genetics , Pedigree , Phenotype , Photosensitivity Disorders/genetics , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Syndrome , Telangiectasis/genetics
6.
Brain ; 136(Pt 12): 3618-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24103911

ABSTRACT

Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.


Subject(s)
Gangliosidoses, GM2/genetics , Mutation/genetics , N-Acetylgalactosaminyltransferases/genetics , Amish , Cells, Cultured , Chromatography, High Pressure Liquid , DNA Mutational Analysis , Family Health , Female , Fibroblasts/metabolism , Gangliosides/biosynthesis , Gangliosidoses, GM2/pathology , Humans , Italy , Male , Phenotype , Skin/pathology
7.
J Clin Invest ; 123(5): 2094-102, 2013 May.
Article in English | MEDLINE | ID: mdl-23543054

ABSTRACT

Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (SLITRK6), a leucine-rich repeat domain transmembrane protein. All 3 mutant SLITRK6 proteins displayed defective cell surface localization. High-resolution MRI of WT and Slitrk6-deficient mouse eyes revealed axial length increase in the mutant (the endophenotype of myopia). Additionally, mutant mice exhibited auditory function deficits that mirrored the human phenotype. Histological investigation of WT and Slitrk6-deficient mouse retinas in postnatal development indicated a delay in synaptogenesis in Slitrk6-deficient animals. Taken together, our results showed that SLITRK6 plays a crucial role in the development of normal hearing as well as vision in humans and in mice and that its disruption leads to a syndrome characterized by severe myopia and deafness.


Subject(s)
Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Myopia/genetics , Adolescent , Adult , Animals , Child , Codon, Nonsense , Female , Hearing , Humans , Infant , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Pedigree , Phenotype , Protein Structure, Tertiary , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...