Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 35(6): 1-8, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33651899

ABSTRACT

Glucokinase (GK), a key regulator of hepatic glucose metabolism in the liver and glucose sensor and mediator in the secretion of insulin in the pancreas, is not studied in detail for its therapeutic application in diabetes. Herein, we study the alteration in GK activity during hyperinsulinemia-induced insulin resistance in HepG2 cells. We also investigated the link between GK and Bcl-2-associated death receptor (BAD) during hyperinsulinemia. There are emerging demands for GK activators from natural resources, and we selected vanillic acid (VA) to evaluate its potential as GK activators during hyperinsulinemia in HepG2 cells. VA is a phenolic compound and a commonly used food additive in many food industries. We found that VA safeguarded GK inhibition during hyperinsulinemia significantly in HepG2 cells. VA also prevented the depletion of glycogen synthesis during hyperinsulinemia, which is evident from protein expression studies of phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, glycogen synthase, and glycogen synthase kinase-3ß. This was associated with activation of BAD activity, which was also confirmed by Western blotting. Molecular docking revealed strong binding between GK active site and VA, supporting their strong interaction. These are the first in vitro data to indicate the beneficial properties of VA with respect to insulin resistance induced by hyperinsulinemia by GK activation. Since it is activated via BAD, the hypoglycemia associated with general GK activation is not expected here and therefore has significant implications for future therapies against diabetes.


Subject(s)
Glucokinase/metabolism , Glucose/metabolism , Hyperinsulinism/metabolism , Vanillic Acid/pharmacology , bcl-Associated Death Protein/metabolism , Hep G2 Cells , Humans , Hyperinsulinism/drug therapy
2.
Biomed Pharmacother ; 100: 467-477, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29477910

ABSTRACT

A series of cardiovascular complications associated with hyperglycemia is a critical threat to the diabetic population. Here we elucidate the link between hyperglycemia and cardiovascular diseases onset, focusing on oxidative stress and associated cardiac dysfunctions. The contribution of advanced glycation end products (AGE) and protein kinase C (PKC) signaling is extensively studied. For induction of hyperglycemia, H9c2 cells were incubated with 33 mM glucose for 48 h to simulate the diabetic condition in in vitro system. Development of cardiac dysfunction was confirmed with the significant increase of lactate dehydrogenase (LDH) release to the medium and associated decrease in cell viability. Various parameters like free radical generation, alteration in innate antioxidant system, lipid peroxidation, AGE production and PKC α -ERK axis were investigated during hyperglycemia and with chlorogenic acid. Hyperglycemia has significantly enhanced reactive oxygen species (ROS- 4 fold) generation, depleted SOD activity (1.3 fold) and expression of enzymes particularly CuZnSOD (SOD1) and MnSOD (SOD2), increased production of AGE (2.18 fold). Besides, PKC α dependent ERK signaling pathway was found activated (1.43 fold) leading to cardiac dysfunction during hyperglycemia. Chlorogenic acid (CA) was found beneficial against hyperglycemia most probably through its antioxidant mediated activity. The outcome of this preliminary study reveals the importance of integrated approach emphasizing redox status, glycation and signaling pathways like PKC α - ERK axis for control and management of diabetic cardiomyopathy (DCM) and potential of bioactives like CA.


Subject(s)
Antioxidants/pharmacology , Chlorogenic Acid/pharmacology , Glucose/toxicity , Protein Kinase C-alpha/biosynthesis , Up-Regulation/drug effects , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Glycosylation/drug effects , Protein Kinase C-alpha/antagonists & inhibitors , Rats , Reactive Oxygen Species/metabolism , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...