Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Clin Biochem ; 38(2): 262-274, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025429

ABSTRACT

The presence of dyskinesia is the most common side effect of chronic administration of levodopa in Parkinson's disease (PD) subjects. Genetic polymorphisms in levodopa metabolizing gene, catechol-O-methyl transferase (COMT), is shown to influence the inter-individual variability in drug response and adverse events. In the present study, the association of COMT rs6269, rs4633, rs4818, and rs4680 polymorphisms and haplotypes on pharmacokinetics and adverse events with levodopa was investigated in 150 PD patients. The age of onset of PD was 58.00 ± 10 yrs. The most common side effect faced by 78% of the subjects was dyskinesia. The AUC of levodopa was found to be significantly higher in subjects with dyskinesia (1695 ± 113 ng/ml/hr, p < 0.0001) than those without dyskinesia (1550 ± 122 ng/ml/hr). We found that the frequency of subjects presenting dyskinesia was significantly higher in subjects carrying variant genotype of COMT rs6269, rs4633, and rs4680 than that with wild genotype and these subjects presented higher AUC of levodopa. In addition, in subjects with dyskinesia, the AUC of levodopa was found to be significantly higher with low COMT (ACCG) haplotype. The association of COMT rs6269, COMT rs4633, COMT rs4818, and COMT rs4680 variant genotypes with the risk of dyskinesia due to levodopa therapy showed an ROC AUC of 0.67 indicating the moderate prediction of dyskinesia (p = 0.0021) with these COMT variants. In conclusion, PD subjects carrying the variant genotypes of COMT strongly influence high levodopa-induced dyskinesia. Hence the genotyping of COMT before the levodopa therapy will be useful to reduce the adverse events associated with the chronic levodopa treatment.

2.
Indian J Clin Biochem ; 37(1): 29-39, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35125691

ABSTRACT

The inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are considered as the most important contributors to the endothelial dysfunction in subjects with type 2 diabetes mellitus (T2DM) and obesity. The hypomethylation of CpG sites in the promoter region of the IL-6 and TNF-α have shown to be associated with the increased expression of IL-6 and TNF-α. However, there are no studies on the methylation and expression of IL-6 and TNF-α with the risk of coronary artery disease (CAD) in subjects with T2DM and obesity in Asian Indians. Hence, the present study was aimed to investigate whether the IL-6, TNF-α promoter methylation and expression in blood leukocyte DNA is associated with the risk of CAD in diabetic and obese subjects in Asian Indians. For this study, we recruited 574 subjects which includes, 207 angiographically confirmed CAD patients, 100 T2DM patients, 82 obese subjects and 185 healthy controls. The methylation status of IL-6 and TNF-α gene loci was determined by methylation specific PCR (MPCR) and gene expression was determined by qPCR. We found significant hypomethylation of IL-6 in CAD and T2DM subjects (OR 1.98 95% CI: 1.32-2.97, p = 0.001, OR: 2.23 95% CI:1.34-3.76, p = 0.001, respectively). Further, a significant increase in the expression of IL-6 in CAD and T2DM subjects (fold change: 26.39 & 14.7, p = 0.0001) compared to the control subjects was observed. A significant increase in the hypomethylation of TNF-α in CAD, T2DM and obese subjects was observed as compared to the control (OR: 2.04 95% CI: 1.36-3.05, p = 0.0005, OR: 1.81 95% CI 1.10-2.96, p = 0.01, and OR: 2.1 95% CI 1.24-3.57, p = 0.007, respectively).We also found an increased expression of TNF-α in CAD, T2DM and obese subjects as compared to controls. In addition, presence of low folate, and hyperhomocysteinemia was observed in the present study, may be the contributing factors for the hypomethylation of IL-6 and TNF-α and oxidative stress. In conclusion, increased expression of IL-6 and TNF-α due to hypomethylation in T2DM and obese individuals may contribute to CAD risk in these subjects. The presence of hyperhomocysteinemia and increased oxidative risk may enhance the CAD risk further.

3.
Curr Drug Metab ; 22(5): 342-352, 2021.
Article in English | MEDLINE | ID: mdl-33459227

ABSTRACT

BACKGROUND: Graft acceptance against immunity is one of the major challenges in solid organ transplant. Immunosuppressive medications have effectively improved the post-transplantation outcome however, it has its own limitations. Genetic polymorphisms in drug-metabolizing enzymes have been identified as the potential targets in developing a pharmacogenetic strategy, to individualize drug dose and also in preventing the adverse events. OBJECTIVE: The rationale of the study was to explore polymorphisms in tacrolimus and mycophenolate metabolic pathways that influence the adverse clinical outcomes in renal transplant recipients. METHODS: A total of 255 renal transplant recipients were analyzed for the pharmacogenetic determinants of tacrolimus (CYP3A5*3 ABCB1 1236 T>C ABCB1 2677 G>A/T ABCB1 3435 T>C) and mycophenolate (UGT1A8*3 UGT1A9 IMPDH I IMPDH II c.787C>T ABCC2 -24 C>T and c.3972C>T) using Sanger sequencing. RESULTS: Acute rejection (AR) was observed in 5.88% of the transplant recipients whereas acute tubular necrosis (ATNs) was observed in 7.45% of the patients within early stage of the maintenance phase. Infections such as urinary tract infection (UTI) and cytomegalovirus (CMV) infection were observed in 11.37% and 12.16% of the patients. The AUC of mycophenolate was significantly higher in patients with increased risk for infections. ABCC2 -24 C>T c.3972C>T polymorphisms and ABCB1 3435 C-allele were associated with reduced risk for infections. ABCC2 rs3740066 was associated with 2.06-fold all-cause mortality risk. CYP3A5 AG- and UGT1A9-440 CC-genotypes showed increased risk and ABCC 3972C>T CC-genotype showed protection against adverse events. CONCLUSION: Genetic variants in tacrolimus and mycophenolate metabolic pathways were found to influence the morbidity and mortality in renal transplant recipients.


Subject(s)
Immunosuppressive Agents/administration & dosage , Kidney Transplantation/adverse effects , Mycophenolic Acid/administration & dosage , Polymorphism, Genetic/drug effects , Tacrolimus/administration & dosage , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Adult , Cytochrome P-450 CYP3A/genetics , Female , Humans , IMP Dehydrogenase/genetics , Immunosuppressive Agents/blood , Immunosuppressive Agents/pharmacology , Male , Middle Aged , Multidrug Resistance-Associated Protein 2/genetics , Mycophenolic Acid/blood , Mycophenolic Acid/pharmacology , Pharmacogenetics , Tacrolimus/blood , Tacrolimus/pharmacology , UDP-Glucuronosyltransferase 1A9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...