Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(2): 112110, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36790927

ABSTRACT

HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.


Subject(s)
HIV-1 , HIV-1/genetics , HIV-1/metabolism , Microglia/metabolism , CCCTC-Binding Factor/metabolism , Chromatin , Genomics , Virus Integration/genetics
2.
PLoS Pathog ; 18(7): e1010110, 2022 07.
Article in English | MEDLINE | ID: mdl-35797416

ABSTRACT

Human immune deficiency virus (HIV) infection in the brain leads to chronic neuroinflammation due to the production of pro-inflammatory cytokines, which in turn promotes HIV transcription in infected microglial cells. However, powerful counteracting silencing mechanisms in microglial cells result in the rapid shutdown of HIV expression after viral reactivation to limit neuronal damage. Here we investigated whether the Nerve Growth Factor IB-like nuclear receptor Nurr1 (NR4A2), which is a repressor of inflammation in the brain, acts directly to restrict HIV expression. HIV silencing following activation by TNF-α, or a variety of toll-like receptor (TLR) agonists, in both immortalized human microglial cells (hµglia) and induced pluripotent stem cells (iPSC)-derived human microglial cells (iMG) was enhanced by Nurr1 agonists. Similarly, overexpression of Nurr1 led to viral suppression, while conversely, knock down (KD) of endogenous Nurr1 blocked HIV silencing. The effect of Nurr1 on HIV silencing is direct: Nurr1 binds directly to the specific consensus binding sites in the U3 region of the HIV LTR and mutation of the Nurr1 DNA binding domain blocked its ability to suppress HIV-1 transcription. Chromatin immunoprecipitation (ChIP) assays also showed that after Nurr1 binding to the LTR, the CoREST/HDAC1/G9a/EZH2 transcription repressor complex is recruited to the HIV provirus. Finally, transcriptomic studies demonstrated that in addition to repressing HIV transcription, Nurr1 also downregulated numerous cellular genes involved in inflammation, cell cycle, and metabolism, further promoting HIV latency and microglial homoeostasis. Nurr1 therefore plays a pivotal role in modulating the cycles of proviral reactivation by potentiating the subsequent proviral transcriptional shutdown. These data highlight the therapeutic potential of Nurr1 agonists for inducing HIV silencing and microglial homeostasis and ultimately for the amelioration of the neuroinflammation associated with HIV-associated neurocognitive disorders (HAND).


Subject(s)
HIV Infections , HIV-1 , Nuclear Receptor Subfamily 4, Group A, Member 2 , Humans , Inflammation/metabolism , Microglia/metabolism , Microglia/virology , Nerve Growth Factors/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Proviruses
3.
Trends Immunol ; 43(8): 630-639, 2022 08.
Article in English | MEDLINE | ID: mdl-35840529

ABSTRACT

Despite potent suppression of HIV-1 viral replication in the central nervous system (CNS) by antiretroviral therapy (ART), between 15% and 60% of HIV-1-infected patients receiving ART exhibit neuroinflammation and symptoms of HIV-1-associated neurocognitive disorder (HAND) - a significant unmet challenge. We propose that the emergence of HIV-1 from latency in microglia underlies both neuroinflammation in the CNS and the progression of HAND. Recent molecular studies of cellular silencing mechanisms of HIV-1 in microglia show that HIV-1 latency can be reversed both by proinflammatory cytokines and by signals from damaged neurons, potentially creating intermittent cycles of HIV-1 reactivation and silencing in the brain. We posit that anti-inflammatory agents that also block HIV-1 reactivation, such as nuclear receptor agonists, might provide new putative therapeutic avenues for the treatment of HAND.


Subject(s)
HIV Infections , HIV-1 , HIV Infections/drug therapy , Humans , Microglia , Neurocognitive Disorders/complications , Neuroinflammatory Diseases , Virus Latency
4.
EMBO Mol Med ; 13(8): e13901, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34289240

ABSTRACT

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Down-Regulation , Glycolysis , Humans , Oxidative Stress , Proteomics , Virus Activation , Virus Latency
5.
Sci Adv ; 6(44)2020 10.
Article in English | MEDLINE | ID: mdl-33127669

ABSTRACT

B cell acute lymphoblastic leukemia (B-ALL) blasts hijack the bone marrow (BM) microenvironment to form chemoprotective leukemic BM "niches," facilitating chemoresistance and, ultimately, disease relapse. However, the ability to dissect these evolving, heterogeneous interactions among distinct B-ALL subtypes and their varying BM niches is limited with current in vivo methods. Here, we demonstrated an in vitro organotypic "leukemia-on-a-chip" model to emulate the in vivo B-ALL BM pathology and comparatively studied the spatial and genetic heterogeneity of the BM niche in regulating B-ALL chemotherapy resistance. We revealed the heterogeneous chemoresistance mechanisms across various B-ALL cell lines and patient-derived samples. We showed that the leukemic perivascular, endosteal, and hematopoietic niche-derived factors maintain B-ALL survival and quiescence (e.g., CXCL12 cytokine signal, VCAM-1/OPN adhesive signals, and enhanced downstream leukemia-intrinsic NF-κB pathway). Furthermore, we demonstrated the preclinical use of our model to test niche-cotargeting regimens, which may translate to patient-specific therapy screening and response prediction.


Subject(s)
Bone Marrow , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Bone Marrow/pathology , Drug Resistance, Neoplasm/genetics , Humans , Lab-On-A-Chip Devices , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Stem Cell Niche/genetics , Tumor Microenvironment/genetics
6.
Cancer Cell ; 37(6): 867-882.e12, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32470390

ABSTRACT

A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy. We uncover a role for non-classical monocytes in B-ALL survival, and demonstrate monocyte abundance at B-ALL diagnosis is predictive of pediatric and adult B-ALL patient survival. We show that human B-ALL blasts alter a vascularized microenvironment promoting monocytic differentiation, while depleting leukemia-associated monocytes in B-ALL animal models prolongs disease remission in vivo. Our profiling of the B-ALL immune microenvironment identifies extrinsic regulators of B-ALL survival supporting new immune-based therapeutic approaches for high-risk B-ALL treatment.


Subject(s)
Monocytes/immunology , Neoplasm Recurrence, Local/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Tumor Microenvironment/immunology , Adolescent , Adult , Animals , Antineoplastic Agents/pharmacology , Bone Marrow Transplantation , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Mice, Inbred C57BL , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Proteome/analysis , RNA-Seq , Retrospective Studies , Single-Cell Analysis , Survival Rate , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...