Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Acta Histochem ; 122(1): 151457, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31708231

ABSTRACT

Serotonin (5-HT) plays pivotal roles in many physiological processes including reproduction of crustaceans, which are mediated 5-HT receptors. The distributions of 5-HT and its receptor have never been explored in Portunus pelagicus. To validate the targets which indirectly indicate the roles of 5-HT in this crab, we have investigated the distribution of 5-HT in the central nervous system (CNS) and ovary using immunohistochemistry and tissue expression of its receptor by RT-PCR. In the brain, 5-HT immunoreactivity (-ir) was detected in clusters 6, 7, 8, 11, 14, 15 and the fibers. In the ventral nerve cord (VNC), 5-HT-ir was detected in pairs of neurons and the fibers connected to the neurons. In the ovary, 5-HT-ir was intense in the oocyte step 1 (Oc1) and Oc2, and its intensity was slightly decreased in Oc3 and Oc4. The 5-HT receptor was molecularly characterized to be type 7, and it was strongly expressed in the eyestalk, brain, VNC, mature ovary and muscle. Due to the presence of 5-HT receptor we suggest that 5-HT acts primarily at the CNS and ovary, thus implicating its role in reproduction especially in the development of oocytes though its exact function in this crab needed to be explored further.


Subject(s)
Arthropod Proteins , Brachyura , Central Nervous System/metabolism , Ovary/metabolism , Receptors, Serotonin , Serotonin , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/metabolism , Cloning, Molecular , Female , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Serotonin/genetics , Serotonin/metabolism
3.
Invert Neurosci ; 18(2): 5, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29560546

ABSTRACT

The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6-8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9-13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14-17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc1) and very intense in Oc2-Oc4. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17ß (E2) and progesterone (P4) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.


Subject(s)
Brain/metabolism , Fresh Water , Ovary/metabolism , Serotonin/metabolism , Steroids/metabolism , Animals , Female , Neurons/metabolism , Neuropil/metabolism , Ovary/drug effects , Serotonin/pharmacology
4.
Article in English | MEDLINE | ID: mdl-29382539

ABSTRACT

This study was aimed to characterize the full length of mRNA of oxytocin/vasopressin (OT/VP)-like mRNA in female Portunus pelagicus (PpelOT/VP-like mRNA) using a partial PpelOT/VP-like sequence obtained previously in our transcriptome analysis (Saetan, 2014) to construct the primers. The PpelOT/VP-like mRNA was 626 bp long and it encoded the preprohormones containing 158 amino acids. This preprohormone consisted of a signal peptide, an active nonapeptide (CFITNCPPG) followed by the dibasic cleavage site (GKR), and the neurophysin domain. Sequence alignment of the PpelOT/VP-like peptide with those of other animals revealed strong molecular conservation. Phylogenetic analysis of encoded proteins revealed that the PpelOT/VP-like peptide was clustered within the group of crustacean OT/VP-like peptide. Analysis by RT-PCR revealed the expression of mRNA transcripts in the eyestalk, brain, ventral nerve cord (VNC), ovary, intestine and gill. The in situ hybridization demonstrated the cellular localizations of the transcripts in the central nervous system (CNS) and ovary tissues. In the eyestalk, the mRNA expression was observed in the neuronal clusters 1-5 but not in the sinus gland complex. In the brain and the VNC, the transcripts were detected in all neuronal clusters but not in the glial cell. In the ovary, the transcripts were found in all stages of oocytes (Oc1, Oc2, Oc3, and Oc4). In addition, synthetic PpelOT/VP-like peptide could inhibit steroid release from the ovary. The knowledge gained from this study will provide more understanding on neuro-endocrinological controls in this crab species.


Subject(s)
Crustacea/metabolism , Gonadal Steroid Hormones/metabolism , Ovary/metabolism , Oxytocin/genetics , RNA, Messenger/genetics , Vasopressins/genetics , Amino Acid Sequence , Animals , Base Sequence , Central Nervous System/metabolism , Cloning, Molecular , Crustacea/genetics , Female , In Situ Hybridization , Phylogeny , Sequence Homology, Amino Acid , Swimming , Tissue Distribution , Transcriptome
5.
Acta Histochem ; 119(7): 701-707, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28919178

ABSTRACT

Recently, the neuronal classification of the ivory shell Spotted Babylon, Babylonia areolata, was readily demonstrated. Regarding its importance as marine economic molluscan species, the attempt to understand the neuroendocrine regulation is necessary. This study firstly demonstrated the neurosecretory cells as well as the existence and distribution of the egg-laying hormone (ELH)-like peptide in the central nervous system (CNS) and ovary of the B. areolata. The neurosecretory cell was characterized by the cytoplasmic purple dot-like structure as stained by the Gomori's paraldehyde fuchsin. Using the anti-abalone (a) ELH, we detected the aELH-like-peptide in neurons (Nr) and neurosecretory cells (Ns) of all ganglia including the cerebral, pleural, parietal, pedal and buccal ganglia. The aELH-like peptide was also present in the neuropil of each. It was noted that not all Ns presented the aELH-like peptide. In the ovary, the aELH-like peptide was slightly detected in early developing oocytes and strongly detected in late developing oocytes and follicular cells. This study firstly reported the evidence of ELH-like peptide in the CNS and ovary of the B. areolata. The molecular cloning as well as to investigate the function of ELH in this species is needed as it will be beneficial for future applications in aquaculture.


Subject(s)
Invertebrate Hormones/metabolism , Mollusca/metabolism , Animals , Blotting, Western , Central Nervous System/metabolism , Female , Immunohistochemistry , Ovary/metabolism
6.
Mol Reprod Dev ; 84(7): 585-595, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28418219

ABSTRACT

A 250-kDa protein was isolated from fluid in the middle spermatic duct (MSD) of the blue crab (Portunus pelagicus). N-terminal and partial amino acid sequences revealed that this MSD-specific protein is highly similar to the plasma-enriched protein Alpha-2 macroglobulin (α2M). The P. pelagicus ortholog (Ppα2M) is a large glycoprotein possessing mannose and N-acetylglucosamine residues. Ppa2m mRNA was detected in the spermatic duct, androgenic gland, and hematopoietic tissue, whereas the protein was primarily observed in the apical cytoplasm of MSD epithelium and in the matrix of the acrosome of MSD sperm; distally within spermatic duct, Ppα2M was lost from the sperm membrane but remained in the sperm acrosome. These results suggest that Ppα2M is expressed and glycosylated in the epithelium of spermatic ducts, secreted into MSD fluid, taken up by sperm in the MSD, and removed from the surface of sperm during its transit towards the female spermatheca. Given that Ppα2M also exhibits protease inhibitor activity, we hypothesize that acrosome localized Ppα2M may suppress premature acrosome reaction during post-testicular sperm maturation in this crab.


Subject(s)
Animal Structures/metabolism , Arthropod Proteins/metabolism , Brachyura/metabolism , Genitalia, Male/metabolism , Spermatozoa/metabolism , alpha-Macroglobulins/metabolism , Animals , Female , Male
7.
Steroids ; 107: 149-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774430

ABSTRACT

The giant freshwater prawn, Macrobrachium rosenbergii, is important to many Asian countries due to its high economic value as an aquaculture product. With demand increasing, there is requirement for a better understanding of the biosynthetic components that regulate its growth and reproduction, including steroids, in order to help increase production. Vertebrate-type steroids and their receptors were identified in crustaceans and implicated in reproduction. In this study, we presented the sex steroids estradiol and progesterone by LC-MS/MS in female M. rosenbergii, and reveal steroidogenic-related genes by in silico analysis of de novo assembled transcriptomes. Comparative analysis with other species was performed to confirm their putative role, as well as tissue-specific and quantitative gene expression. We reveal 29 transcripts that encode for steroidogenic-related proteins, including steroidogenic enzymes, a nuclear steroid hormone receptors, and a steroidogenic factor. Moreover, we identified for the first time the presence of steroidogenic factor 1, StAR-related lipid transfer protein, estradiol receptor- and progesterone-like protein in M. rosenbergii. Those targeted for gene expression analysis (3 beta-hydroxysteroid dehydrogenase, 17 beta-hydroxysteroid dehydrogenase, estrogen sulfotransferase and progesterone receptor-like) showed widespread expression within many tissues, and at relatively high levels in the central nervous system (CNS) during ovarian maturation. In summary, we provide further evidence for the existence of steroidogenic pathways in crustaceans, which may be useful for advancing prawn aquaculture.


Subject(s)
Arthropod Proteins/biosynthesis , Estradiol , Gene Expression Regulation/drug effects , Palaemonidae/metabolism , Progesterone , Animals , Estradiol/biosynthesis , Estradiol/pharmacology , Female , Progesterone/biosynthesis , Progesterone/pharmacology
8.
PLoS One ; 10(5): e0123848, 2015.
Article in English | MEDLINE | ID: mdl-26023789

ABSTRACT

Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.


Subject(s)
Neuropeptides/metabolism , Palaemonidae/metabolism , Animals , Female , Nervous System/metabolism , Neuropeptides/genetics , Ovary/metabolism , Palaemonidae/genetics , Transcriptome/genetics
9.
Cell Tissue Res ; 353(3): 493-510, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23733265

ABSTRACT

We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 µm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 µm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/metabolism , Central Nervous System/metabolism , Gonadotropin-Releasing Hormone/metabolism , Peptides/metabolism , Animals , Arthropod Antennae/cytology , Arthropod Antennae/metabolism , Brachyura/cytology , Central Nervous System/cytology , Neurons/cytology , Neurons/metabolism , Neuropil/cytology , Neuropil/metabolism
10.
Acta Histochem ; 114(7): 659-64, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22178117

ABSTRACT

Animal eggs possess investments through which sperm must penetrate. The aim of the present study was to investigate the role of the egg coating, the vitelline envelope, during sperm-egg interactions in the black tiger shrimp, Penaeus monodon. The site(s) of primary binding between sperm and egg and the possible binding molecule(s) for sperm were identified. In vitro adsorption of the vitelline envelope protein onto the sperm surface showed that primary binding occurred between the sperm anterior spike of acrosome intact sperm and the vitelline envelope. Results from streptavidin blotting revealed that the component of the vitelline envelope that interacts with the sperm integral membrane protein is a 370kDa protein. In addition, it was shown that the vitelline envelope protein had no ability to induce acrosome reaction. These results suggest that the function of the vitelline envelope is as a primary binding site for sperm in shrimp, but not a sole trigger for the acrosome reaction.


Subject(s)
Fertilization , Penaeidae/physiology , Vitelline Membrane/physiology , Absorption , Acrosome/metabolism , Acrosome Reaction , Animals , Arthropod Proteins/metabolism , Female , Male , Membrane Proteins/metabolism , Penaeidae/cytology , Protein Binding , Spermatozoa/metabolism , Spermatozoa/physiology , Vitelline Membrane/metabolism
11.
Invert Neurosci ; 11(1): 29-42, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21476046

ABSTRACT

Immunohistochemistry was used to identify the distribution of both APGWamide-like and RFamide-like peptides in the central nervous system (CNS) and ovary of the mature female giant freshwater prawn, Macrobrachium rosenbergii. APGWamide-like immunoreactivity (ALP-ir) was found only within the sinus gland (SG) of the eyestalk, in small- and medium-sized neurons of cluster 4, as well as their varicosed axons. RFamide-like immunoreactivity (RF-ir) was detected in neurons of all neuronal clusters of the eyestalk and CNS, except clusters 1 and 5 of the eyestalk, and dorsal clusters of the subesophageal, thoracic, and abdominal ganglia. The RF-ir was also found in all neuropils of the CNS and SG, except the lamina ganglionaris. These immunohistochemical locations of the APGWamide-like and RF-like peptides in the eyestalk indicate that these neuropeptides could modulate the release of the neurohormones in the sinus gland. The presence of RFamide-like peptides in the thoracic and abdominal ganglia suggests that it may act as a neurotransmitter which controls muscular contractions. In the ovary, RF-ir was found predominantly in late previtellogenic and early vitellogenic oocytes, and to a lesser degree in late vitellogenic oocytes. These RFs may be involved with oocyte development, but may also act with other neurohormones and/or neurotransmitters within the oocyte in an autocrine or paracrine manner.


Subject(s)
Central Nervous System/metabolism , Neuropeptides/metabolism , Ovary/metabolism , Palaemonidae , Animals , Central Nervous System/cytology , Central Nervous System/immunology , Female , Immunohistochemistry , Microscopy, Confocal , Neurons/cytology , Neurons/immunology , Neurons/metabolism , Neuropeptides/analysis , Oocytes/cytology , Oocytes/immunology , Oocytes/metabolism , Ovary/cytology , Ovary/immunology , Palaemonidae/anatomy & histology , Palaemonidae/metabolism , Tissue Distribution
12.
Acta Histochem ; 112(6): 557-66, 2010 Nov.
Article in English | MEDLINE | ID: mdl-19604545

ABSTRACT

Gonadotropin-releasing hormone (GnRH) is a neuropeptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the presence and distribution of two isoforms of GnRH-like peptides in neural ganglia and ovary of reproductively mature female abalone, Haliotis asinina, using immunohistochemistry. We found significant immunoreactivities (ir) of anti-lamprey(l) GnRH-III and anti-tunicate(t) GnRH, but with variation of labeling intensity by each anti-GnRH type. lGnRH-III-ir was detected in numerous type 1 neurosecretory cells (NS1) throughout the cerebral and pleuropedal ganglia, whereas tGnRH-I-ir was detected in only a few NS1 cells in the dorsal region of cerebral and pleuropedal ganglia. In addition, a small number of type 2 neurosecretory cells (NS2) in cerebral ganglion showed lGnRH-III-ir. Long nerve fibers in the neuropil of ventral regions of the cerebral and pluropedal ganglia showed strong tGnRH-I-ir. In the ovary, lGnRH-III-ir was found primarily in oogonia and stage I oocytes, whereas tGnRH-ir was observed in stage I oocytes and some stage II oocytes. These results indicate that GnRH produced in neural ganglia may act in neural signaling. Alternatively, GnRH may also be synthesized locally in the ovary where it could induce oocyte development.


Subject(s)
Ganglia, Invertebrate/chemistry , Gastropoda/chemistry , Gonadotropin-Releasing Hormone/analysis , Ovary/chemistry , Animals , Female , Gonadotropin-Releasing Hormone/biosynthesis , Gonadotropin-Releasing Hormone/immunology , Immunohistochemistry , Protein Isoforms/analysis , Protein Isoforms/immunology , Signal Transduction
13.
Cell Tissue Res ; 336(2): 267-76, 2009 May.
Article in English | MEDLINE | ID: mdl-19340461

ABSTRACT

Our aim has been to determine whether carbohydrate distribution in the oviducts of progesterone-treated animals is comparable with that of seasonal breeders in Rana tigrina. Like many other anurans, R. tigrina oviduct exhibits a short straight portion (pars recta, pr) at the beginning followed by a long, highly coiled portion (pars convoluta, pc). Histologically, the oviduct of this species revealed some unique features, one of which was intense toluidine blue staining, specifically in the upper mucosal glands of pc4. Based on lectin reactivities in the epithelial cells and mucosal glands, patterns of lectin staining in the seasonal breeders were classified into seven types: R1-R3 (for pr) and C1-C4 (for pc). Typically, some lectins reacted selectively either with ciliated cells (concanavalin A) or non-cialiated cells (Ricinus communis agglutinin I and wheatgerm agglutinin); however, Bandeiraea simplicifolia agglutinin I reacted with both cell types. These staining patterns were different in the progesterone-treated animals. Differences in glycan distribution in the oviductal secretions were revealed by lectin blotting. Compared with the seasonal breeders, an enhanced staining of some lectins was noted in the hormone-treated animals: either an increased staining intensity of existing protein bands or additional staining of new protein bands. Inversely, the staining of wheatgerm agglutinin was markedly diminished in the hormone-treated animals, suggesting the inhibitory effect of progesterone on oviductal glycan distribution. Whether alteration in glycan distribution upon progesterone treatment affects the physiological properties of the released jelly substances remains to be addressed.


Subject(s)
Carbohydrate Metabolism/drug effects , Oviducts/metabolism , Progesterone/administration & dosage , Progesterone/pharmacology , Ranidae/metabolism , Animals , Breeding , Epithelium/drug effects , Epithelium/metabolism , Epithelium/ultrastructure , Female , Glycoproteins/metabolism , Glycosylation/drug effects , Lectins/metabolism , Oviducts/cytology , Oviducts/drug effects , Oviducts/ultrastructure , Polysaccharides/metabolism , Seasons
14.
Histochem Cell Biol ; 131(5): 629-42, 2009 May.
Article in English | MEDLINE | ID: mdl-19214554

ABSTRACT

In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT(1 ha). The 5-HT(1 ha) shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT(1 ha) is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT(1 ha) belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT(1 ha) mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT(1 ha) specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT(1 ha) immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.


Subject(s)
Ganglia, Invertebrate/metabolism , Gastropoda/metabolism , Gene Expression , Gonads/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Amino Acid Sequence , Animals , Base Sequence , Female , Male , Molecular Sequence Data , Phylogeny , Sequence Alignment
15.
Cell Tissue Res ; 334(1): 135-44, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18726120

ABSTRACT

Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are approximately 50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.


Subject(s)
Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , Murinae/physiology , Protamines/metabolism , Spermatids/ultrastructure , Spermatogenesis/physiology , Animals , Male , Microscopy, Electron, Transmission , Microscopy, Immunoelectron , Murinae/metabolism , Nuclear Proteins/metabolism , Rats , Spermatids/metabolism , Spermatocytes/ultrastructure
16.
Endocrinology ; 149(8): 3942-51, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18420734

ABSTRACT

Arylsulfatase A (AS-A) is a lysosomal enzyme, which catalyzes the desulfation of certain sulfogalactolipids, including sulfogalactosylglycerolipid (SGG), a molecule implicated in cell adhesion. In this report, immunocytochemistry revealed the selective presence of AS-A in the corpus luteum of mouse ovaries. Immunoblotting indicated that mouse corpus luteum AS-A had a molecular mass of 66 kDa, similar to AS-A of other tissues. Corpus luteum AS-A was active, capable of desulfating the artificial substrate, p-nitrocatechol sulfate, at the optimum pH of five. To understand further the role of AS-A in female reproduction, levels of AS-A were determined during corpus luteum development in pseudopregnant mice and during luteolysis after cessation of pseudopregnancy. Immunocytochemistry, immunoblotting and desulfation activity showed that AS-A expression was evident at the onset of pseudopregnancy in the newly formed corpora lutea, and its level increased steadily during gland development. The increase in the expression and activity of AS-A continued throughout luteolysis after the decrease in serum progesterone levels. We also observed the selective presence of SGG on the luteal cell surface in developed corpora lutea, as shown by immunofluorescence of mouse ovary sections as well as high-performance thin-layer chromatography of lipids isolated from mouse and pig corpora lutea. The identity of the "SGG" band on the thin layer silica plate was further validated by electrospray ionization mass spectrometry. Significantly, SGG disappeared in regressing corpora lutea. Therefore, lysosomal AS-A may be involved in cell-surface remodeling during luteolysis by desulfating SGG after its endocytosis and targeting to the lysosome.


Subject(s)
Cerebroside-Sulfatase/metabolism , Corpus Luteum/metabolism , Galactolipids/metabolism , Ovary/metabolism , Animals , Antigens, Surface/metabolism , Corpus Luteum/enzymology , Corpus Luteum/growth & development , Female , Luteolysis/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Inbred ICR , Ovary/enzymology , Pseudopregnancy/enzymology , Pseudopregnancy/metabolism , Sulfates/metabolism , Swine , Tissue Distribution
17.
Invert Neurosci ; 8(1): 49-57, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18288509

ABSTRACT

In the present study, we demonstrated the existence of GnRH-like peptides in the central nervous system (CNS) and ovary of the giant freshwater prawn, Macrobrachium rosenbergii using immunocytochemistry. The immunoreactivity (ir) of lamprey (l) GnRH-III was detected in the soma of medium-sized neurons located in neuronal cluster number 11 in the middle part of supraesophageal ganglion (deutocerebrum), whereas ir-octopus (oct) GnRH was observed in the soma of both medium-sized and large-sized neurons in thoracic ganglia, as well as in the fibers innervating the other medium-sized and large-sized neuronal cell bodies in the thoracic ganglia. In addition, ir-lGnRH-I was observed in the cytoplasm of late previtellogenic oocyte and early vitellogenic oocyte. These data suggest that M. rosenbergii contain at least three isoforms of GnRH: two GnRH isoforms closely related to lGnRH-III and octGnRH in the CNS, whereas another isoform, closely related to lGnRH-I, was localized in the ovary. This finding provides supporting data that ir-GnRH-like peptide(s) may exist in this decapod crustacean.


Subject(s)
Central Nervous System/metabolism , Decapoda/anatomy & histology , Gonadotropin-Releasing Hormone/metabolism , Ovary/metabolism , Peptides/metabolism , Amino Acid Sequence , Animals , Decapoda/metabolism , Female , Gonadotropin-Releasing Hormone/classification
18.
Gen Comp Endocrinol ; 155(3): 613-22, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17905251

ABSTRACT

The distribution and presence of gonadotropin-releasing hormone (GnRH) in the central nervous system (CNS) of Penaeus monodon were examined by immunocytochemistry, high performance liquid chromatography (HPLC), and radioimmunoassay (RIA). We demonstrated the existence of octopus (oct)GnRH-liked immunoreactivity (ir-octGnRH) and lamprey (l)GnRH-III-liked immunoreactivity (ir-lGnRH-III) in cell bodies of medium-sized neurons of the anterior part (protocerebrum) of the supraesophageal ganglion (brain). In addition, only the ir-octGnRH was detected in the nerve fibers located in the brain and segmental ganglia (subesophageal, thoracic, and abdominal ganglia). Moreover, some branches of these fibers also innervated the neurons in the middle (deutrocerebrum), posterior (tritocerebrum) brain and segmental ganglia. There was no ir-lGnRH-I and ir-salmon (s)GnRH detected in the shrimp CNS. The results from HPLC and RIA showed ir-GnRH in the CNS using anti-lGnRH-III, but not with anti-mammalian (m)GnRH. The data from immunocytochemistry, HPLC and RIA suggest that ir-GnRH in shrimp may be more similar to octGnRH and lGnRH-III than the other forms. These findings support the hypothesis that GnRH-liked factor(s) may be an ancient peptide that also exists in this decapod crustacean.


Subject(s)
Central Nervous System/metabolism , Gonadotropin-Releasing Hormone/metabolism , Penaeidae/metabolism , Peptides/metabolism , Animals , Central Nervous System/chemistry , Chromatography, High Pressure Liquid , Female , Gonadotropin-Releasing Hormone/isolation & purification , Immunohistochemistry , Models, Biological , Peptides/isolation & purification , Radioimmunoassay , Tissue Distribution
19.
Mol Reprod Dev ; 70(2): 211-21, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15570617

ABSTRACT

The basic nuclear proteins (BNPs) in spermatozoa of a tropical abalone, Haliotis asinina, were composed of a majority of protamine-like (PL) protein and a small amount of histones H1 and H4. Abalone H1 and PL proteins exhibited strong immunological cross reactivities among themselves as well as with chick H5 and calf thymus H1. Thus, all these proteins may belong to the same family. Immunolocalization by indirect immunofluorescence and immunoelectron microscopy indicated that H1 and H4 were present in all steps of the male germ cells, however, with decreasing amount in late stage cells, particularly spermatids and spermatozoa. On the other hand, PL was present in middle step cells (secondary spermatocytes) with increasing amount in spermatids and spermatozoa when the chromatin became tightly packed. Thus, PL may be involved in the condensation of chromatin in the spermatozoa of this species.


Subject(s)
Chromatin/chemistry , Chromatin/ultrastructure , Mollusca/genetics , Nuclear Proteins/analysis , Spermatogenesis/physiology , Spermatozoa/chemistry , Spermatozoa/ultrastructure , Animals , Antibodies/immunology , Histones/analysis , Histones/immunology , Male , Nuclear Proteins/immunology , Protamines/analysis , Protamines/immunology , Spermatozoa/metabolism , Testis/cytology
20.
Mol Reprod Dev ; 70(2): 184-97, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15570620

ABSTRACT

The process of chromatin condensation during spermiogenesis in Rana tigerina is similar to the heterochromatization in somatic cells, where 30 nm fibers are coalesced together into a dense mass in spermatozoa without changing their initial size and nucleosomal organization. This conclusion was supported by the finding that the full set of core histones (H2A, H2B, H3, H4) are still present in sperm chromatin, but histone H1 is replaced by its variant, H1V. Rabbit anti-sera were raised against histone H3, H1, H1V, and H5 (H1 variant in chick erythrocyte). Anti-histone H1 antiserum cross-reacted with histone H1V, which implied the presence of a common epitope. Anti-histone H1V and H5 also showed cross-reaction with each other but not with histone H1, which implied the presence of a common epitope not shared by histone H1. Immunocytochemical studies, using the above antibodies as probes, showed that histones H3 is present in all steps of spermatogenic and spermiogenic cells, and somatic cells including red blood cells, Sertoli cells, and Leydig cells, while histone H1 is present in all of the cells mentioned except in spermatozoa where it is replaced by histone H1V. Histone H1V appears in the early spermatids starting from spermatid 1 (St1), and it persists throughout the course of spermatid differentiation into spermatozoa. Histone H1V is also found in chromosomes of metaphase spermatocyte and red blood cells. Thus histone H1V may cause the final and complete condensation of chromatin in Rana spermatozoa, a process which is similar to the heterochromatization occurring in somatic cells such as metaphase chromosome and chick erythrocyte nucleus.


Subject(s)
Chromatin/chemistry , Chromatin/ultrastructure , Histones/analysis , Ranidae/genetics , Spermatogenesis/physiology , Spermatozoa/chemistry , Spermatozoa/ultrastructure , Animals , Antibodies/immunology , Chromatin/metabolism , Histones/immunology , Histones/metabolism , Male , Ranidae/physiology , Spermatozoa/metabolism , Testis/cytology , Testis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...