Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Atmos Chem ; 79(1): 39-66, 2022.
Article in English | MEDLINE | ID: mdl-35075316

ABSTRACT

At the pandemic of COVID-19, the movement of business and other non-essential activities were majorly restricted at the end of March 2020 in India and continued in different lockdown phases until June 2020. By categorically, studying sensitivity towards anthropogenic factors with other environmental implications in urban Indian cities during phase-wise lockdown scenarios will pave the way for a refined Clean Air Programme (CAP). In this study, the aerosol particulate matter variations between the lockdown phases in both spatial and temporal scales have been explored along with cities exceeding national ambient air quality (NAAQ) standards covering different geographical regions of India for their air quality level. The results of the spatial pattern of Copernicus Atmosphere Monitoring System (CAMS) near-real-time data showed a negative change both in Aerosol Optical Depth (AOD) (-0.2 to 0.1) and black carbon AOD (bcAOD) (-0.9 to -0.75). The changes were evident in successive phases of lockdown with an overall AOD reduction of about 70-90%. Southern urban cities showed a significant impact of mobile sources from temporal analysis than other cities. Principal Component Analysis (PCA) for effects of pollutants by anthropogenic factors (mobile and point source) and meteorological factors (wind speed, wind direction, solar radiation, relative humidity) revealed the two significant driving factors. PM reduction was about 50-70%, predominantly due to anthropogenic factors. The factor analysis revealed the influence of meteorological factors between the major urban cities (Delhi, Kolkata, Mumbai, Chennai, Bengaluru, and Hyderabad). Cities that exceed NAAQ standard performed well during phase-wise lockdowns, exceptional to cities in Gangetic plain. This study helps to frame region-specific strategic action plans for the CAP.

2.
Bioresour Technol ; 250: 723-732, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29223093

ABSTRACT

Stabilisation of ammoniacal nitrogen from solid waste and leachate significantly improved by combining novel processes like SHARON (single reactor system for high activity ammonia removal over nitrite) and ANAMMOX (anaerobic ammonium oxidation) with advantages of lower carbon requirements, aeration and N2O emissions. This paper deals with establishing combined SHARON-ANAMMOX processes in situ pilot-scale landfill bioreactors (LFBR). Molecular analysis in LFBR with changes in nitrogen, hydrazine, hydroxylamine confirmed aerobic and anaerobic ammonium oxidising bacteria (AOB & ANAMMOX) as key players in SHARON-ANAMMOX processes. In situ SHARON-ANAMMOX process was established in LFBR with total nitrogen and ammoniacal nitrogen removal efficiency of 84% and 71%, respectively at NLR of 1.2 kgN/m3/d in 147 d, compared to ammoniacal nitrogen removal of 49% at NLR of 1.0 kgNH4-N/m3/d in 336 d feasible in Control LFBR. Nitrogen massbalance demonstrated in situ SHARON-ANAMMOX advantageous than control LFBR with higher nitrogen transformation to N2 (50.8%) and lower residual nitrogen in solid waste (7.7%).


Subject(s)
Bioreactors , Nitrogen , Anaerobiosis , Bacteria, Anaerobic , Oxidation-Reduction , Waste Disposal Facilities , Water Pollutants, Chemical
3.
Waste Manag ; 32(12): 2385-400, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22766438

ABSTRACT

In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.


Subject(s)
Nitrogen/chemistry , Quaternary Ammonium Compounds/chemistry , Refuse Disposal/methods , Water Pollutants, Chemical/chemistry , Anaerobiosis , Oxidation-Reduction
4.
Bioresour Technol ; 101(3): 845-52, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19818606

ABSTRACT

Biological stability of the Municipal Solid Waste (MSW) is assessed under tropical climatic condition using landfill lysimeters. Various landfill operating conditions and two different substrates were employed. Solid waste samples collected during different time intervals of landfill operation assessed for volatile solids (VS), organic carbon (OC), specific oxygen uptake rate (SOUR), and water extractable components. Organic carbon achieved faster stabilization than the nitrogen content in MSW within the various landfill operating conditions. At the end of 960days of lysimeter operation, the MSW from different landfills were aerobically and anaerobically stable and results comparable with compost. Further, bioreactor landfill given better biological stability and high methane content than other landfill operating conditions with continuous leachate treatment is compelling benefit.


Subject(s)
Bioreactors , Refuse Disposal/methods , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Carbon/chemistry , Conservation of Natural Resources , Equipment Design , Gases , Nitrogen/chemistry , Oxygen/chemistry , Soil , Tropical Climate , Water/chemistry , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...