Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26601, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434300

ABSTRACT

Microbial cellulases are highly versatile catalysts with significant potential in various industries, including pulp and paper, textile manufacturing, laundry, biofuel production, food and animal feed, brewing, and agriculture. Cellulases have attracted considerable attention from the scientific community owing to their broad industrial applications and the complex nature of enzymatic systems. In the present study, a novel fungal isolate of Aspergillus sp. IN5 was used to produce cellulases. We optimized each parameter, including carbon source, incubation temperature, pH, and incubation time, for maximum cellulase production using isolate IN5 under solid-state fermentation conditions. The optimized parameters for cellulase production by isolate IN5 under solid-state fermentation were as follows: substrate, soybean residue; incubation temperature, 35 °C; pH, 7.0; and incubation duration, 5 days. These conditions resulted in the highest total cellulase activity (0.26 U/g substrate), and carboxymethyl cellulase and ß-glucosidase activities of 3.32 and 196.09 U/g substrate, respectively. The obtained fungal cellulase was used for the enzymatic hydrolysis of acid- or alkali-pretreated rice straw, which served as a model substrate. Notably, compared with acid pretreatment, the pretreatment of rice straw with diluted alkali led to higher yields of reducing sugars. Maximum reducing sugar yield (286.06 ± 2.77 mg/g substrate) was obtained after 24-h incubation of diluted alkali-pretreated rice straw mixed with an enzyme loading of 15 U/g substrate. The findings of this study provide an alternative strategy for utilizing agricultural waste and an approach to efficiently produce cellulase for the degradation of lignocellulosic materials, with promising benefits for sustainable waste management.

2.
Polymers (Basel) ; 15(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571218

ABSTRACT

Textile waste has emerged as a critical global challenge, with improper disposal practices leading to adverse environmental consequences. In response to this pressing issue, there is growing interest in recycling textile waste containing cellulose as an alternative approach to reducing the impact of industrial waste on the environment. The objective of this research is to investigate the extraction and characterization of nanocellulose from polyester-cotton textile waste as a potential solution to address the growing concerns of waste management in the textile industry. To obtain nanocellulose, a comprehensive process involving alkaline sodium hydroxide (NaOH) treatment of the polyester-cotton textile (35% PET and 65% cotton) was employed, resulting in average yield percentages ranging from 62.14% to 71.21%. To achieve the complete hydrolysis of PET polyester in the blends, second hydrolysis was employed, and the optimized condition yield cotton fiber was 65.06 wt%, relatively close to the theoretical yield. Subsequently, the obtained cellulosic material underwent an acid hydrolysis process using 70 percent (v/v) sulfuric acid (H2SO4) solution at 45 °C for 90 min, resulting in nanocellulose. Centrifugation at 15,000 rpm for 15 min facilitated the separation of nanocellulose from the acid solution and yielded 56.26 wt% at optimized conditions. The characterization of the nanocellulose was carried out utilizing a comprehensive array of techniques, including absorption, transmission, and reflection spectra, and Fourier transform infrared. The characterization results provide valuable insights into the unique properties of nanocellulose extracted from textile waste. In this research, the obtained nanocellulose was mixed with PVA and silver nanoparticle to form biodegradable film composites as the reinforcement. In comparison, biodegradable film of PVA:nanocellulose 9.5:0.5 with silver nanoparticle 0.3 wt% and glycerol as a plasticizer exhibits better tensile strength (2.37 MPa) and elongation (214.26%) than the PVA film with normal cellulose. The prepared biodegradable film was homogeneous and had a smooth surface without the internal defect confirmed by the CT scan. This result opens avenues for enhancing the quantities of eco-friendly film composites, potentially replacing conventional plastic films in the future.

3.
Polymers (Basel) ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37112111

ABSTRACT

Textile waste usually ends up in landfills and causes environmental pollution. In this study, pretreatment methods for textile recycling, including autoclaving, freezing alkali/urea soaking, and alkaline pretreatment, were applied to textile waste with various cotton/polyester blending ratios. The best condition for enzymatic hydrolysis was a 60/40 textile waste blend of cotton/polyethylene terephthalate (PET) with a reusable chemical pretreatment (15% NaOH) at 121 °C for 15 min. The hydrolysis of pretreated textile waste by cellulase was optimized using response surface methodology (RSM) based on central composite design (CCD). The optimized conditions were 30 FPU/g of enzyme loading and 7% of substrate loading, which resulted in a maximum observed value of hydrolysis yield at 89.7%, corresponding to the predicted value of 87.8% after 96 h of incubation. The findings of this study suggest an optimistic solution for textile waste recycling.

4.
Int J Biol Macromol ; 234: 123676, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796561

ABSTRACT

The goal of this study is to isolate cellulose nanocrystals (CNC) from sugarcane leaves (SCL) and fabricate filter membranes. Filter membranes consisting of the CNC and varying amount graphene oxide (GO) were fabricated using vacuum filtration technique. The α-cellulose content increased from 53.56 ± 0.49 % in untreated SCL to 78.44 ± 0.56 % and 84.99 ± 0.44 % in steam-exploded and bleached fibers, respectively. Atomic force microscopy (AFM) and transmission electron microscope (TEM) of CNC isolated from SCL indicated nanosized particles in the range of 7.3 nm and 150 nm for diameter and length, respectively. Morphologies of the fiber and CNC/GO membranes were determined by scanning electron microscopy (SEM) and crystallinity by X-ray diffraction (XRD) analysis of crystal lattice. The crystallinity index of CNC decreased with the addition of GO into the membranes. The CNC/GO-2 recorded the highest tensile index of 3.001 MPa. The removal efficiency increases with increasing GO content. The highest removal efficiency of 98.08 % was recorded for CNC/GO-2. CNC/GO-2 membrane reduced growth of Escherichia coli to 65 CFU compared to >300 CFU of control sample. SCL is a potential bioresource for isolation of cellulose nanocrystals and fabrication of high-efficiency filter membrane for particulate matter removal and inhibition of bacteria.


Subject(s)
Nanoparticles , Saccharum , Cellulose/chemistry , Particulate Matter , Nanoparticles/chemistry
5.
ACS Omega ; 7(44): 39975-39984, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385815

ABSTRACT

Agroindustrial wastes are renewable sources and the most promising sustainable alternative to lignocellulosic biomass for cellulose production. This study assessed the electrothermal pretreatment of rambutan peel (RP) for producing cellulose fibers. The pretreatment was carried out by Ohmic heating at a solid-to-liquid ratio of 1:10 (w/v) in a water/ethanol (1:1, v/v) mixture as the electrical transmission medium at 60 ± 1 °C for different holding times (15, 30, and 60 min). Ohmic heating did not significantly influence the total fiber yield for the various holding times. However, the compositions of the samples in terms of extractives, lignin, hemicellulose, and α-cellulose content were significantly influenced. In addition, the electrothermal pretreatment method reduced the bleaching time of RP by 25%. The pretreated fibers were thermally stable up to 240 °C. Ohmic heating pretreatment times of 15 and 30 min were found most promising, reducing the required bleaching chemicals and increasing the α-cellulose yield. The pretreated bleached cellulose fibers had similar properties to nontreated bleached fibers and could be efficiently processed into stable gels of strong shear-thinning behavior with potential application as rheology modifiers in food products. Our results demonstrate that rambutan peel could serve as a promising sustainable alternative to woody biomass for cellulose production. Ohmic heating meets the requirements for industrial applications as it is eco-friendly, improves the efficiency and energy consumption in fiber processing, and could as well be included in the processing of similar food wastes.

6.
Polymers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071613

ABSTRACT

Nanocomposite film of poly(vinyl alcohol) (PVA) incorporated with bacterial cellulose nanocrystals (BCNCs) and magnetite nanoparticles (Fe3O4) is reported in this study. The BCNC-Fe3O4 nanoparticles and PVA film was prepared by in situ synthesis technique using chemical co-precipitation. Different concentrations of BCNC-Fe3O4 (20%, 40% and 60% w/w) were mechanically dispersed in PVA solution to form the nanocomposite film. Transmission electron microscopy (TEM) analysis of BCNC-Fe3O4 nanoparticles showed irregular particle sizes ranging from 4.93 to 30.44 nm with an average size distribution of 22.94 nm. The presence of characteristic functional groups of PVA, BCNC and Fe3O4 were confirmed by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. Scanning electron microscope (SEM) attached energy dispersive spectroscopy (EDS) and vibrating sample magnetometer (VSM) analysis revealed that, the iron content and magnetic property increased with increasing BCNC-Fe3O4 content. The saturation magnetizations (MS) value increased from 5.14 to 11.56 emu/g. The PVA/ BCNC-Fe3O4 at 60% showed the highest Young's modulus value of 2.35 ± 0.16 GPa. The prepared film could be a promising polymeric nanomaterial for various magnetic-based applications and for the design of smart electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...