Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17424, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833323

ABSTRACT

This research explores the potential of microwave-synthesized MoS2-graphene nanohybrid as additives to enhance the tribological properties of diesel-based engine oil. The synthesis method offers significant advantages, reducing both synthesis time and energy consumption by 90-98% compared to conventional approaches. The synthesized nanohybrids are characterized through FESEM, EDX, XRD, and Raman spectroscopy to understand their morphology and functional group interactions. These nanohybrids are incorporated into 20W40 engine oil following synthesis, and a comprehensive assessment of their properties is conducted. This evaluation covers critical parameters like viscosity index, stability, volatility, as well as tribological properties, oxidation resistance, and thermal conductivity of the oil-nanohybrid system. Results demonstrate that adding just 0.05 wt% of MoS2-graphene nanohybrid leads to a remarkable 58.82% reduction in friction coefficient and a significant 36.26% decrease in the average wear scar diameter. Additionally, oxidation resistance improves by 19.21%, while thermal conductivity increases notably by 19.83% (at 100 °C). The study demonstrates the synergistic effects of these nanohybrids in reducing friction and wear, enhancing oxidation resistance, and improving thermal conductivity. In conclusion, this research highlights the potential of microwave-synthesized MoS2-graphene nanohybrid as promising tribological additives for diesel engine oils. Their successful integration could significantly enhance the performance and durability of critical mechanical components in diesel engines, representing a significant advancement in lubrication technology.

2.
Sci Rep ; 13(1): 12559, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532805

ABSTRACT

In this study, MoS2-hBN hybrid nanoparticles were synthesized using an advanced microwave platform for new nanolubricant formulations. The synthesized nanoparticles were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Raman spectroscopy. The hybrid nanoparticles were then introduced into a 20W40 diesel-based engine oil to produce a nanolubricant. The physical and chemical properties of the nanolubricant were investigated, including the viscosity index, stability, volatility, tribological properties, oxidation properties, and thermal conductivity. The results showed that the inclusion of 0.05 wt% MoS2-hBN hybrid nanoparticles in the oil significantly reduced the coefficient of friction and wear scar diameter by 68.48% and 35.54%, respectively. Moreover, it exhibited substantial oxidation and thermal conductivity improvement of 38.76% and 28.30%, respectively, at 100 °C. These findings demonstrate the potential of MoS2-hBN hybrid nanoparticles as an effective additive to enhance the properties of nanolubricant significantly. Furthermore, this study offers valuable insights into the underlying mechanisms responsible for the observed enhancements. The promising outcomes of this investigation contribute to the advancement of nanotechnology-based lubricants, showcasing their potential for improving engine efficiency and prolonging the lifespan of machinery.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36432233

ABSTRACT

The present study reported the synthesis of SnS2 nanoparticles by using a thermal decomposition approach using tin chloride and thioacetamide in diphenyl ether at 200 °C over 60 min. SnS2 nanoparticles with novel morphologies were prepared by the use of different alkylamines (namely, octylamine (OCA), dodecylamine (DDA), and oleylamine (OLA)), and their role during the synthesis was explored in detail. The synthesized SnS2 nanostructures were characterized using an array of analytical techniques. The XRD results confirmed the formation of hexagonal SnS2, and the crystallite size varied from 6.1 nm to 19.0 nm and from 2.5 to 8.8 nm for (100) and (011) reflections, respectively. The functional group and thermal analysis confirmed the presence of organics on the surface of nanoparticles. The FE-SEM results revealed nanoparticles, nanoplates, and flakes assembled into flower-like morphologies when dodecylamine, octylamine, and oleylamine were used as capping agents, respectively. The analysis of optical properties showed the variation in the bandgap and the concentration of surface defects on the SnS2 nanoparticles. The role of alkylamine as a capping agent was explored and discussed in detail in this paper and the mechanism for the evolution of different morphologies of SnS2 nanoparticles was also proposed.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234497

ABSTRACT

We used response surface methodology (RSM) based on the central composite design (CCD) model to optimize the synthesis time and temperature of the molybdenum disulfide (MoS2) nanoparticles using the flexiWAVE microwave. Furthermore, the synthesized MoS2 nanoparticles were used in SAE 20W50 diesel engine oil to study the tribological properties according to ASTM standards using a four-ball tribotester. The optimization result shows that the synthesis temperature and time for the MoS2 nanoparticles in the microwave were ~200 °C and ~15 min, respectively, with a coefficient of friction (COF) and average wear scar diameter (WSD) of 0.0849 and 320 µm. Furthermore, the difference between the experimental and predicted values was minimal (1.88% (COF) and 0.625% (WSD)), which was similar to the optimization model.

5.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296765

ABSTRACT

In this study, a magnetic solid-phase extraction method was developed based on multi-wall carbon nanotubes decorated by magnetic nanoparticles (Fe3O4) and cadmium sulfide nanoparticles (Fe3O4@MWCNT-CdS) for trace extraction of cefixime and tetracycline antibiotics from urine and drug company wastewater. The adsorbent features were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and energy dispersive X-ray analysis (EDX). Various effective parameters on the sorption and desorption cycle, such as sorption time, the mass of adsorbent, pH, salt addition, and material ratio, were investigated and optimized. The data were evaluated using isotherm models, and experimental data were well-fitted to both Langmuir (R2 = 0.975) and Freundlich (R2 = 0.985) models. Moreover, kinetic of reaction was agreement with pseudo-second-order (R2 = 0.999) as compared pseudo-first-order (R2 = 0.760). The maximum adsorption capacity for tetracycline and cefixime was achieved at 116.27 and 105.26 mg·g-1, respectively. Hence, the prepared adsorbent can be used as an alternative material for enhanced determination of pharmaceutical substances in biological fluids.

6.
Polymers (Basel) ; 14(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297844

ABSTRACT

Pollution due to various heavy metals is increasing at an alarming rate. Removal of hexavalent chromium from the environment is a significant and challenging issue due to its toxic effects on the ecosystem. Development of a low-cost adsorbent with better adsorption efficiency is presently required. In this study, waste coconut fibers (CF) were used to prepare its composite with polyaniline (PANI) via in-situ oxidation. The obtained composites with varying loading of PANI (15, 25, 50, and 75% w/w) were characterized by FE-SEM, TGA, and FTIR spectroscopy. The prepared composites were evaluated for their adsorption performance for removal of Cr(VI). It was concluded that the composite with 50% w/w polyaniline loading on coconut fiber exhibited a maximum adsorption efficiency of 93.11% in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. From the optimization studies it was observed that the absorbents exhibited the best adsorption response for Cr(VI) removal with 0.25 mg/mL adsorbent at pH 4, in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. This study highlights the application of low-cost adsorbent as a potential candidate for the removal of hexavalent chromium. A detailed study on the adsorption kinetics and isothermal analysis was conducted for the removal of Cr(VI) from aqueous solution using coconut fiber-polyaniline composite. From the kinetic investigation, the adsorption was found to follow the pseudo second order model. The data obtained were best fitted to the Elovich model confirming the chemisorption of the Cr(VI) on coconut polymer composites. The analysis of the isothermal models indicated monolayer adsorption based on the Langmuir adsorption model.

7.
Polymers (Basel) ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080757

ABSTRACT

A new solid phase micro extraction (SPME) fiber coating composed of electrospun polyethylene terephthalate (PET) nanofibrous mat doped with superhydrophobic nanosilica (SiO2) was coated on a stainless-steel wire without the need of a binder. The coating was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR) techniques and it was used in headspace-SPME of 16 organochlorine pesticides in water samples prior to gass chromatography micro electron capture detector (GC-µECD) analysis. The effects of main factors such as adsorption composition, electrospinning flow rate, salt concentration, extraction temperature, extraction time, and desorption conditions were investigated. Under the optimum conditions, the linear dynamic range (8−1000 ng L−1, R2 > 0.9907), limits of detection (3−80 ng L−1), limits of quantification (8−200 ng L−1), intra-day and inter-day precisions (at 400 and 1000 ng L−1, 1.7−13.8%), and fiber-to-fiber reproducibility (2.4−13.4%) were evaluated. The analysis of spiked tap, sewage, industrial, and mineral water samples for the determination of the analytes resulted in satisfactory relative recoveries (78−120%).

8.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144986

ABSTRACT

All humans and animals need access to clean water in their daily lives. Unfortunately, we are facing water scarcity in several places around the world, and, intentionally or unintentionally, we are contaminating the water in a number of ways. The rise in population, globalization, and industrialization has simultaneously given rise to the generation of wastewater. The pollutants in wastewater, such as organic contaminants, heavy metals, agrochemicals, radioactive pollutants, etc., can cause various ailments as well as environmental damage. In addition to the existing pollutants, a number of new pollutants are now being produced by developing industries. To address this issue, we require some emerging tools and materials to remove effluents from wastewater. Zeolites are the porous aluminosilicates that have been used for the effective pollutant removal for a long time owing to their extraordinary adsorption and ion-exchange properties, which make them available for the removal of a variety of contaminants. However, zeolite alone shows much less photocatalytic efficiency, therefore, different photoactive materials are being doped with zeolites to enhance their photocatalytic efficiency. The fabrication of zeolite-based composites is emerging due to their powerful results as adsorbents, ion-exchangers, and additional benefits as good photocatalysts. This review highlights the types, synthesis and removal mechanisms of zeolite-based materials for wastewater treatment with the basic knowledge about zeolites and wastewater along with the research gaps, which gives a quality background of worldwide research on this topic for future developments.

9.
Polymers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145908

ABSTRACT

Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber's unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method's application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.

10.
Sci Rep ; 12(1): 14108, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35982077

ABSTRACT

Lubrication has become essential in enhancing engine efficiency in the era of rapid globalising. The tribological, oxidation and thermal conductivity properties of an engine oil play a vital role in improving the quality of a vehicle's engine life. In this research, molybdenum disulfide (MoS2) nanoparticle was synthesised via a microwave hydrothermal reactor. Later, the nanoparticles were dispersed in SAE 20W50 diesel engine oil to formulate the nanolubricant. The results show that nanolubricant with 0.01 wt% MoS2 concentration showed the coefficient of friction, average wear scar diameter decreased by 19.24% and 19.52%, respectively, compared to the base oil. Furthermore, the nanolubricant with 0.01 wt% concentration of MoS2 nanoparticle showed an enhancement of 61.15% in oxidation induction time in comparison to the base oil. Furthermore, MoS2 addition within the base oil demonstrates a ~ 10% improvement in thermal conductivity compared to the base oil.

11.
Polymers (Basel) ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683897

ABSTRACT

The unique structures and multifunctionalities of two-dimensional (2D) nanomaterials, such as graphene, have aroused increasing interest in the construction of novel scaffolds for biomedical applications due to their biocompatible and antimicrobial abilities. These two-dimensional materials possess certain common features, such as high surface areas, low cytotoxicities, and higher antimicrobial activities. Designing suitable nanocomposites could reasonably improve therapeutics and reduce their adverse effects, both medically and environmentally. In this study, we synthesized a biocompatible nanocomposite polyhydroxyalkanoate, chitosan, and tungsten disulfide (PHA/Ch-WS2). The nanocomposite PHA/Ch-WS2 was characterized by FESEM, elemental mapping, FTIR, and TGA. The objective of this work was to investigate the antimicrobial activity of PHA/Ch-WS2 nanocomposites through the time-kill method against the multi-drug-resistant model organisms Escherichia coli (E. coli) K1 and methicillin-resistant Staphylococcus aureus (MRSA). Further, we aimed to evaluate the cytotoxicity of the PHA/Ch-WS2 nanocomposite using HaCaT cell lines by using a lactate dehydrogenase (LDH) assay. The results demonstrated very significant bactericidal effects of the PHA/Ch-WS2 nanocomposite, and thus, we hypothesize that the nanocomposite would feasibly suit biomedical and sanitizing applications without causing any adverse hazard to the environment.

12.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745428

ABSTRACT

2D-WS2 incorporated polyaniline nanocomposites (WS2-PANI) with varying WS2 loadings were synthesized by a facile in situ oxidative polymerization technique which effectively promoted photocatalytic waste-water remediation using methylene blue (MB) as the probe molecules. The physicochemical properties of WS2-PANI (1-5) nanocomposites were investigated using multifarious techniques such as FT-IR, XRD, BET surface area, TGA, FESEM, and HRTEM. An electron microscopy analysis that was performed using HRTEM analysis confirm the layered structure of WS2 with periodic planes (100) separated by 0.27 nm. The photocatalytic performance of the WS2-PANI (1-5) for MB degradation performed under UV photo irradiation clearly showed that 2 wt.% WS2-PANI outperformed other variants with 93% degradation MB within 90 min. Furthermore, the catalytic material was reusable for five cycles without a significant loss of the catalytic performance.

13.
Gels ; 8(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35621561

ABSTRACT

Water is a vital resource that is required for social and economic development. A rapid increase in industrialization and numerous anthropogenic activities have resulted in severe water contamination. In particular, the contamination caused by heavy metal discharge has a negative impact on human health and the aquatic environment due to the non-biodegradability, toxicity, and carcinogenic effects of heavy metals. Thus, there is an immediate need to recycle wastewater before releasing heavy metals into water bodies. Hydrogels, as potent adsorbent materials, are a good contenders for treating toxic heavy metals in wastewater. Hydrogels are a soft matter formed via the cross-linking of natural or synthetic polymers to develop a three-dimensional mesh structure. The inherent properties of hydrogels, such as biodegradability, swell-ability, and functionalization, have made them superior applications for heavy metal removal. In this review, we have emphasized the recent development in the synthesis of hydrogel-based adsorbent materials. The review starts with a discussion on the methods used for recycling wastewater. The discussion then shifts to properties, classification based on various criteria, and surface functionality. In addition, the synthesis and adsorption mechanisms are explained in detail with the understanding of the regeneration, recovery, and reuse of hydrogel-based adsorbent materials. Therefore, the cost-effective, facile, easy to modify and biodegradable hydrogel may provide a long-term solution for heavy metal removal.

14.
Acta Trop ; 231: 106440, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35378058

ABSTRACT

Acanthamoeba spp. are free living amoebae which can give rise to Acanthamoeba keratitis and granulomatous amoebic encephalitis. The surface of Acanthamoeba contains ergosterol which is an important target for drug development against eukaryotic microorganisms. A library of ten functionally diverse quinazolinone derivatives (Q1-Q10) were synthesised to assess their activity against Acanthamoeba castellanii T4. The in-vitro effectiveness of these quinazolinones were investigated against Acanthamoeba castellanii by amoebicidal, excystation, host cell cytopathogenicity, and NADPH-cytochrome c reductase assays. Furthermore, wound healing capability was assessed at different time durations. Maximum inhibition at 50 µg/mL was recorded for compounds Q5, Q6 and Q8, while the compound Q3 did not exhibit amoebicidal effects at tested concentrations. Moreover, LDH assay was conducted to assess the cytotoxicity of quinazolinones against HaCaT cell line. The results of wound healing assay revealed that all compounds are not cytotoxic and are likely to promote wound healing at 10 µg/mL. The excystation assays revealed that these compounds significantly inhibit the morphological transformation of A. castellanii. Compound Q3, Q7 and Q8 elevated the level of NADPH-cytochrome c reductase up to five folds. Sterol 14alpha-demethylase (CYP51) a reference enzyme in ergosterol pathway was used as a potential target for anti-amoebic drugs. In this study using i-Tasser, the protein structure of Acanthamoeba castellanii (AcCYP51) was developed in comparison with Naegleria fowleri protein (NfCYP51) structure. The sequence alignment of both proteins has shown 42.72% identity. Compounds Q1-Q10 were then molecularly docked with the predicted AcCYP51. Out of ten quinazolinones, three compounds (Q3, Q7 and Q8) showed good binding activity within 3 Å of TYR 114. The in-silico study confirmed that these compounds are the inhibitor of CYP51 target site. This report presents several potential lead compounds belonging to quinazolinone derivatives for drug discovery against Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Amebiasis , Amebicides , Amebiasis/drug therapy , Amebicides/pharmacology , Cytochromes c/metabolism , Cytochromes c/pharmacology , Cytochromes c/therapeutic use , Ergosterol/metabolism , Humans , NADP/metabolism , NADP/pharmacology , NADP/therapeutic use , Oxidoreductases/metabolism , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/therapeutic use
15.
Materials (Basel) ; 14(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442891

ABSTRACT

The MXenes are a novel family of 2-D materials with promising biomedical activity, however, their anticancer potential is still largely unexplored. In this study, a comparative cytotoxicity investigation of Ti3C2 MXenes with polypropylene glycol (PPG), and polyethylene glycol (PEG) surface-modified 2-D Ti3C2 MXene flakes has been conducted towards normal and cancerous human cell lines. The wet chemical etching method was used to synthesize MXene followed by a simple chemical mixing method for surface modification of Ti3C2 MXene with PPG and PEG molecules. SEM and XRD analyses were performed to examine surface morphology and elemental composition, respectively. FTIR and UV-vis spectroscopy were used to confirm surface modification and light absorption, respectively. The cell lines used to study the cytotoxicity of MXene and surface-modified MXenes in this study were normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells. These cell lines were also used as controls (without exposure to study material and irradiation) to measure their baseline cell viability under the same lab environment. The surface-modified MXenes exhibited a sharp reduction in cell viability towards both normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells but cytotoxicity was more pronounced towards cancerous cell lines. This may be due to the difference in cell metabolism and the occurrence of high pre-existing levels of reactive oxygen species (ROS) within cancerous cells. The highest toxicity towards both normal and cancerous cell lines was observed with PEGylated MXenes followed by PPGylated and bare MXenes. The normal cell's viability was barely above 70% threshold with 250 mg/L PEGylated MXene concentration whereas PPGylated and bare MXene were less toxic towards normal cells, even at 500 mg/L concentration. Moreover, the toxicity was found to be directly related to the type of cell lines. In general, the HaCaT cell line exhibited the lowest toxicity while toxicity was highest in the case of the A375 cell line. The photothermal studies revealed high photo response for PEGylated MXene followed by PPGylated and bare MXenes. However, the PPGylated MXene's lower cytotoxicity towards normal cells while comparable toxicity towards malignant cells as compared to PEGylated MXenes makes the former a relatively safe and effective anticancer agent.

16.
J Oleo Sci ; 69(11): 1359-1366, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055442

ABSTRACT

For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and ß-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and ß-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.


Subject(s)
Carbon/analysis , Esters/analysis , Fatty Acids/analysis , Linoleic Acid/analysis , Phytosterols/analysis , Plant Oils/chemistry , Seeds/chemistry , Tocopherols/analysis , Triglycerides/analysis , Ulmaceae/chemistry , Biopharmaceutics , Chemical Phenomena , Cosmetics , Peroxides/analysis , Sitosterols/analysis , Triglycerides/chemistry , gamma-Tocopherol/analysis
17.
Nanomaterials (Basel) ; 10(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659972

ABSTRACT

Developing stable nanofluids and improving their thermo-physical properties are highly important in heat transfer applications. In the present work, the stability, thermal conductivity, and rheological properties of tungsten disulphide (WS2) nanoparticles (NPs) with ethylene glycol (EG) were profoundly examined using a particle size analyzer, zeta-sizer, thermal property analyzer, rheometer, and pH measuring system. WS2 NPs were characterized by various techniques, such as XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Spectroscopy), FESEM (Field emission scanning electron microscopy), and high-resolution transmission electron microscopy (HRTEM). The nanofluids were obtained with the two-step method by employing three volume concentrations (0.005%, 0.01%, and 0.02%) of WS2. The influence of different surfactants (Sodium dodecyl sulphate (SDS), Sodium dodecylbenzenesulfonate (SDBS), Cetyltrimethylammonium bromide (CTAB)) with various volume concentrations (0.05-2%) on the measured properties has also been evaluated. Pristine WS2/EG nanofluids exhibit low zeta potential values, i.e., -7.9 mV, -9.3 mV, and -5 mV, corresponding to 0.005%, 0.01%, and 0.02% nanofluid, respectively. However, the zeta potential surpassed the threshold (±30 mV) and the maximum values reached of -52 mV, -45 mV, and 42 mV for SDS, SDBS, and CTAB-containing nanofluids. This showed the successful adsorption of surfactants onto WS2, which was also observed through the increased agglomerate size of up to 1720 nm. Concurrently, particularly for 0.05% SDS with 0.005% WS2, thermal conductivity was enhanced by up to 4.5%, with a corresponding decrease in viscosity of up to 10.5% in a temperature range of (25-70 °C), as compared to EG. Conversely, the viscoelastic analysis has indicated considerable yield stress due to the presence of surfactants, while the pristine nanofluids exhibited enhanced fluidity over the entire tested deformation range. The shear flow behavior showed a transition from a non-Newtonian to a Newtonian fluid at a low shear rate of 10 s-1. Besides this, the temperature sweep analysis has shown a viscosity reduction in a range of temperatures (25-70 °C), with an indication of a critical temperature limit. However, owing to an anomalous reduction in the dynamic viscosity of up to 10.5% and an enhancement in the thermal conductivity of up to 6.9%, WS2/EG nanofluids could be considered as a potential candidate for heat transfer applications.

18.
Acta Trop ; 211: 105618, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32628912

ABSTRACT

Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.


Subject(s)
Acanthamoeba/drug effects , Antifungal Agents/pharmacology , Azoles/pharmacology , Ergosterol/metabolism , Nanoparticles/chemistry , Humans
19.
Appl Microbiol Biotechnol ; 104(7): 3121-3131, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32060693

ABSTRACT

Antibiotic resistance in pathogenic bacteria is a major health challenge, as Infectious Diseases Society of America (IDSA) has recognized that the past simply drugs susceptible pathogens are now the most dangerous pathogens due to their nonstop growing resistance towards conventional antibiotics. Therefore, due to the emergence of multi-drug resistance, the bacterial infections have become a serious global problem. Acute infections feasibly develop into chronic infections because of many factors; one of them is the failure of effectiveness of antibiotics against superbugs. Modern research of two-dimensional nanoparticles and biopolymers are of great interest to attain the intricate bactericidal activity. In this study, we fabricated an antibacterial nanocomposite consisting of representative two-dimensional molybdenum disulfide (2D MoS2) nanoparticles. Polyhydroxyalkanoate (PHA) and chitosan (Ch) are used to encapsulate MoS2 nanoparticles into their matrix. This study reports the in vitro antibacterial activity and host cytotoxicity of novel PHA-Ch/MoS2 nanocomposites. PHA-Ch/MoS2 nanocomposites were subjected to time-dependent antibacterial assays at various doses to examine their antibacterial activity against multi-drug-resistant Escherichia coli K1 (Malaysian Type Culture Collection 710859) and methicillin-resistant Staphylococcus aureus (MRSA) (Malaysian Type Culture Collection 381123). Furthermore, the cytotoxicity of nanocomposites was examined against spontaneously immortalized human keratinocyte (HaCaT) cell lines. The results indicated significant antibacterial activity (p value < 0.05) against E. coli K1 and MRSA. In addition, PHA-Ch/MoS2 showed significant host cytocompatibility (p < 0.05) against HaCaT cells. The fabricated PHA-Ch/MoS2 nanocomposites have demonstrated effective antibacterial activity against both Gram-positive and -negative bacteria and exhibited better biocompatibility. Finally, PHA-Ch/MoS2 nanocomposites are shown to be suitable for antibacterial applications and also hold potential for further biomedical studies. Graphical Abstract.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biopolymers/pharmacology , Disulfides/pharmacology , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Molybdenum/pharmacology , Polyhydroxyalkanoates/pharmacology , Anti-Bacterial Agents/chemistry , Biopolymers/chemistry , Cell Line , Chitosan/chemistry , Disulfides/chemistry , Drug Resistance, Multiple, Bacterial/physiology , Humans , Metal Nanoparticles/chemistry , Molybdenum/chemistry , Nanocomposites/chemistry , Polyhydroxyalkanoates/chemical synthesis , Polyhydroxyalkanoates/chemistry
20.
Nanomaterials (Basel) ; 9(4)2019 Apr 21.
Article in English | MEDLINE | ID: mdl-31010071

ABSTRACT

The present research focused on the fabrication of biocompatible polyhydroxyalkanoate, chitosan, and hexagonal boron nitride incorporated (PHA/Ch-hBN) nanocomposites through a simple solvent casting technique. The fabricated nanocomposites were comprehensively characterized by Fourier transform infrared spectroscope (FT-IR), field emission scanning electroscope (FESEM), and elemental mapping and thermogravimetric analysis (TGA). The antibacterial activity of nanocomposites were investigated through time-kill method against multi drug resistant (MDR) microbes such as methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) K1 strains. In addition, nanocomposites have examined for their host cytotoxicity abilities using a Lactate dehydrogenase (LDH) assay against spontaneously immortalized human keratinocytes (HaCaT) cell lines. The results demonstrated highly significant antibacterial activity against MDR organisms and also significant cell viability as compared to the positive control. The fabricated PHA/Ch-hBN nanocomposite demonstrated effective antimicrobial and biocompatibility properties that would feasibly suit antibacterial and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...