Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 109(5): 695-712, 2021 05.
Article in English | MEDLINE | ID: mdl-32608188

ABSTRACT

Regeneration of skeletal muscle after volumetric injury is thought to be impaired by a dysregulated immune microenvironment that hinders endogenous repair mechanisms. Such defects result in fatty infiltration, tissue scarring, chronic inflammation, and debilitating functional deficits. Here, we evaluated the key cellular processes driving dysregulation in the injury niche through localized modulation of sphingosine-1-phosphate (S1P) receptor signaling. We employ dimensionality reduction and pseudotime analysis on single cell cytometry data to reveal heterogeneous immune cell subsets infiltrating preclinical muscle defects due to S1P receptor inhibition. We show that global knockout of S1P receptor 3 (S1PR3) is marked by an increase of muscle stem cells within injured tissue, a reduction in classically activated relative to alternatively activated macrophages, and increased bridging of regenerating myofibers across the defect. We found that local S1PR3 antagonism via nanofiber delivery of VPC01091 replicated key features of pseudotime immune cell recruitment dynamics and enhanced regeneration characteristic of global S1PR3 knockout. Our results indicate that local S1P receptor modulation may provide an effective immunotherapy for promoting a proreparative environment leading to improved regeneration following muscle injury.


Subject(s)
Cyclopentanes/therapeutic use , Immunotherapy/methods , Muscle, Skeletal/injuries , Regeneration/drug effects , Sphingosine-1-Phosphate Receptors/physiology , Animals , Cyclopentanes/pharmacology , Drug Liberation , Flow Cytometry , Leukopenia/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myeloid Cells/immunology , Nanofibers , Organ Size , Quadriceps Muscle/immunology , Quadriceps Muscle/injuries , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Signal Transduction/drug effects , Sphingosine-1-Phosphate Receptors/deficiency , Sphingosine-1-Phosphate Receptors/genetics , T-Lymphocyte Subsets/immunology , Tissue Scaffolds
2.
Exp Biol Med (Maywood) ; 241(10): 1084-97, 2016 05.
Article in English | MEDLINE | ID: mdl-27229903

ABSTRACT

Monocytes and macrophages play a critical role in tissue development, homeostasis, and injury repair. These innate immune cells participate in guiding vascular remodeling, stimulation of local stem and progenitor cells, and structural repair of tissues such as muscle and bone. Therefore, there is a great interest in harnessing this powerful endogenous cell source for therapeutic regeneration through immunoregenerative biomaterial engineering. These materials seek to harness specific subpopulations of monocytes/macrophages to promote repair by influencing their recruitment, positioning, differentiation, and function within a damaged tissue. Monocyte and macrophage phenotypes span a continuum of inflammatory (M1) to anti-inflammatory or pro-regenerative cells (M2), and their heterogeneous functions are highly dependent on microenvironmental cues within the injury niche. Increasing evidence suggests that division of labor among subpopulations of monocytes and macrophages could allow for harnessing regenerative functions over inflammatory functions of myeloid cells; however, the complex balance between necessary functions of inflammatory versus regenerative myeloid cells remains to be fully elucidated. Historically, biomaterial-based therapies for promoting tissue regeneration were designed to minimize the host inflammatory response; although, recent appreciation for the roles that innate immune cells play in tissue repair and material integration has shifted this paradigm. A number of opportunities exist to exploit known signaling systems of specific populations of monocytes/macrophages to promote repair and to better understand the biological and pathological roles of myeloid cells. This review seeks to outline the characteristics of distinct populations of monocytes and macrophages, identify the role of these cells within diverse tissue injury niches, and offer design criteria for immunoregenerative biomaterials given the intrinsic inflammatory response to their implantation.


Subject(s)
Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Immunologic Factors/pharmacology , Macrophages/physiology , Monocytes/physiology , Wounds and Injuries/therapy , Animals , Biocompatible Materials/metabolism , Humans , Immunologic Factors/metabolism , Macrophages/drug effects , Monocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...