Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Environ Microbiol ; 90(4): e0236323, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38551351

ABSTRACT

Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.


Subject(s)
Biosensing Techniques , Wastewater , Recombinases , DNA , Pseudomonas , Coloring Agents
2.
Nat Commun ; 13(1): 5544, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130968

ABSTRACT

Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create materials with tailored functions. While bottom-up assembly of macroscopic ELMs with a de novo matrix would offer the greatest control over material properties, we lack the ability to genetically encode a protein matrix that leads to collective self-organization. Here we report growth of ELMs from Caulobacter crescentus cells that display and secrete a self-interacting protein. This protein formed a de novo matrix and assembled cells into centimeter-scale ELMs. Discovery of design and assembly principles allowed us to tune the composition, mechanical properties, and catalytic function of these ELMs. This work provides genetic tools, design and assembly rules, and a platform for growing ELMs with control over both matrix and cellular structure and function.


Subject(s)
Biocompatible Materials , Bioengineering , Caulobacter crescentus , Biopolymers , Caulobacter crescentus/genetics
3.
ACS Synth Biol ; 11(9): 2909-2916, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35961652

ABSTRACT

Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.


Subject(s)
Biosensing Techniques , Synthetic Biology , Metabolic Engineering
4.
Front Cardiovasc Med ; 6: 156, 2019.
Article in English | MEDLINE | ID: mdl-31737648

ABSTRACT

Objective: Aortic valve disease is commonly found in the elderly population. It is characterized by dysregulated extracellular matrix remodeling followed by extensive microcalcification of the aortic valve and activation of valve interstitial cells. The mechanism behind these events are largely unknown. Studies have reported expression of hypoxia inducible factor-1 alpha (HIF1α) in calcific nodules in aortic valve disease, therefore we investigated the effect of hypoxia on extracellular matrix remodeling in aged aortic valves. Approach and Results: Western blotting revealed elevated expression of HIF1α and the complex of matrix metalloprotease 9 (MMP9) and neutrophil gelatinase-associated lipocalin (NGAL) in aged porcine aortic valves cultured under hypoxic conditions. Consistently, immunofluorescence staining showed co-expression of MMP9 and NGAL in the fibrosa layer of these porcine hypoxic aortic valves. Gelatinase zymography demonstrated that the activity of MMP9-NGAL complex was significantly increased in aortic valves in 13% O2 compared to 20% O2. Importantly, the presence of ectopic elastic fibers in the fibrosa of hypoxic aortic valves, also detected in human diseased aortic valves, suggests altered elastin homeostasis due to hypoxia. Conclusion: This study demonstrates that hypoxia stimulates pathological extracellular matrix remodeling via expression of NGAL and MMP9 by valve interstitial cells.

5.
Neurotoxicology ; 35: 121-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23313730

ABSTRACT

Chronic exposure to Mn results in the development of a neurological disorder known as manganism characterized by neurological deficits resembling that seen in Parkinsonism. Although dopaminergic neurons within the nigrostriatal pathway appear intact, Mn-induced irregularities in DA transmission have been observed including decreased amphetamine-induced DA release and loss of the dopamine transporter (DAT). Results of studies to evaluate the effect of Mn and DA on cell viability in control and DAT-transfected HEK cells reveal that Mn is equally toxic to both cell lines whereas DA was only toxic to cells containing DAT. DA toxicity was saturable suggesting that transport may be rate limiting. When Mn and DA were added simultaneously to the media, cell toxicity was similar to that produced by Mn alone suggesting that Mn may suppress DA uptake in the DAT containing cells. Preincubation of DA prior to the addition of Mn resulted in cell death which was essentially additive with that produced independently by the two agents. Mn was also shown to decrease DA uptake and amphetamine-induced DA efflux in DAT containing cells. Time-lapsed confocal microscopy indicates that Mn can promote trafficking of cell surface DAT into intracellular compartments which may account for the decrease in DA uptake and DA efflux in these cells. Mn-induced internalization of DAT may provide an explanation for disruption in DA transmission previously reported in the striatum.


Subject(s)
Chlorides/toxicity , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine/toxicity , Manganese Poisoning/etiology , Amphetamine/pharmacology , Cell Survival/drug effects , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Manganese Compounds , Manganese Poisoning/genetics , Manganese Poisoning/metabolism , Manganese Poisoning/pathology , Membrane Potentials , Microscopy, Confocal , Protein Transport , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/metabolism , Time Factors , Time-Lapse Imaging , Transfection
6.
Neurochem Int ; 61(1): 25-33, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22543103

ABSTRACT

Excess exposure to Mn causes a neurological disorder known as manganism which is similar to dystonic movements associated with Parkinson's disease. Manganism is largely restricted to occupations in which high atmospheric levels are prevalent which include Mn miners, welders and those employed in the ferroalloy processing or related industrial settings. T1 weighted MRI images reveal that Mn is deposited to the greatest extent in the globus pallidus, an area of the brain that is presumed to be responsible for the major CNS associated symptoms. Neurons within the globus pallidus receive glutamatergic input from the subthalamic nuclei which has been suggested to be involved in the toxic actions of Mn. The neurotoxic actions of Mn and glutamate are similar in that they both affect calcium accumulation in the mitochondria leading to apoptotic cell death. In this paper, we demonstrate that the combination of Mn and glutamate potentiates toxicity of neuronally differentiated P19 cells over that observed with either agent alone. Apoptotic signals ROS, caspase 3 and JNK were increased in an additive fashion when the two neurotoxins were combined. The anti-glutamatergic drug, riluzole, was shown to attenuate these apoptotic signals and prevent P19 cell death. Results of this study confirm, for the first time, that Mn toxicity is potentiated in the presence of glutamate and that riluzole is an effective antioxidant which protects against both Mn and glutamate toxicity.


Subject(s)
Apoptosis/drug effects , Cell Differentiation , Glutamic Acid/pharmacology , Manganese/pharmacology , Neurons/drug effects , Riluzole/pharmacology , Signal Transduction/drug effects , Animals , Cell Line , MAP Kinase Kinase 4/metabolism , Mice , Neurons/cytology , Neurons/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...