Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 25(6): 1383-1393, 2019 12.
Article in English | MEDLINE | ID: mdl-31368426

ABSTRACT

GaN films have been grown on SiC substrates with an AlN nucleation layer by using a metal organic chemical vapor deposition technique. Micro-cracking of the GaN films has been observed in some of the grown samples. In order to investigate the micro-cracking and microstructure, the samples have been studied using various characterization techniques such as optical microscopy, atomic force microscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy (TEM). The surface morphology of the AlN nucleation layer is related to the stress evolution in subsequent overgrown GaN epilayers. It is determined via TEM evidence that, if the AlN nucleation layer has a rough surface morphology, this leads to tensile stresses in the GaN films, which finally results in cracking. Raman spectroscopy results also suggest this, by showing the existence of considerable tensile residual stress in the AlN nucleation layer. Based on these various observations and results, conclusions or propositions relating to the microstructure are presented.

2.
Microsc Microanal ; 20(4): 1262-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24758870

ABSTRACT

In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the In x Ga1-x As channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the In x Ga1-x As layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the In x Ga1-x As channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...