Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931452

ABSTRACT

The open-source drug library, namely, MMV Pandemic Response Box, contains 153 antiviral agents, a chemically and pharmacologically diverse mixture of early-stage, emerging anti-infective scaffolds, and mature compounds currently undergoing clinical development. Hence, the Pandemic Response Box might contain compounds that bind and interfere with target molecules or cellular pathways that are conserved or shared among the closely related viruses with enterovirus A71 (EV-A71). This study aimed to screen antiviral agents included in the Pandemic Response Box for repurposing to anti-EV-A71 activity and investigate the inhibitory effects of the compounds on viral replication. The compounds' cytotoxicity and ability to rescue infected cells were determined by % cell survival using an SRB assay. The hit compounds were verified for anti-EV-A71 activity by virus reduction assays for viral RNA copy numbers, viral protein synthesis, and mature particle production using qRT-PCR, Western blot analysis, and CCID50 assay, respectively. It was found that some of the hit compounds could reduce EV-A71 genome replication and protein synthesis. D-D7 (2-pyridone-containing human rhinovirus 3C protease inhibitor) exhibited the highest anti-EV-A71 activity. Even though D-D7 has been originally indicated as a polyprotein processing inhibitor of human rhinovirus 3C protease, it could be repurposed as an anti-EV-A71 agent.

2.
PLoS One ; 19(5): e0297272, 2024.
Article in English | MEDLINE | ID: mdl-38768163

ABSTRACT

A dynamic of virus adaptation and a mass vaccination campaign could significantly reduce the severity of clinical manifestations of COVID-19 and transmission. Hence, COVID-19 may become an endemic disease globally. Moreover, mass infection as the COVID-19 pandemic progressed affected the serology of the patients as a result of virus mutation and vaccination. Therefore, a need exists to acquire accurate serological testing to monitor the emergence of new outbreaks of COVID-19 to promptly prevent and control the disease spreading. In this study, the anti-Orf8 antibodies among samples collected in Thailand's first, fourth, and fifth waves of COVID-19 outbreaks compared with pre-epidemic sera were determined by indirect ELISA. The diagnostic sensitivity and specificity of the anti-Orf8 IgG ELISA for COVID-19 samples from the first, fourth, and fifth waves of outbreaks was found to be 100% compared with pre-epidemic sera. However, the diagnostic sensitivity and specificity of the anti-Orf8 IgG ELISA for a larger number of patient samples and controls from the fifth wave of outbreaks which were collected on day 7 and 14 after an RT-PCR positive result were 58.79 and 58.44% and 89.19 and 58.44%, respectively. Our data indicated that some of the controls might have antibodies from natural past infections. Our study highlighted the potential utility of anti-Orf8 IgG antibody testing for seroprevalence surveys but still warrants further investigations.


Subject(s)
Antibodies, Viral , COVID-19 , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/immunology , COVID-19/diagnosis , COVID-19/virology , Thailand/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Female , Viral Proteins/immunology , Male , Middle Aged , Sensitivity and Specificity , Aged , COVID-19 Serological Testing/methods , Antibody Formation/immunology
3.
Animals (Basel) ; 14(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473145

ABSTRACT

Human-to-animal SARS-CoV-2 transmission was observed, including a veterinarian contracting COVID-19 through close contact with an infected cat, suggesting an atypical zoonotic transmission. This study investigated the prevalence of SARS-CoV-2 antibodies in cats during human outbreaks and elucidated the correlation between cat infections and human epidemics. A total of 1107 cat serum samples were collected and screened for SARS-CoV-2 antibodies using a modified indirect ELISA human SARS-CoV-2 antibody detection kit. The samples were confirmed using a cPass™ neutralization test. The SARS-CoV-2 seropositivity rate was 22.67% (199/878), mirroring the trend observed in concomitant human case numbers. The waves of the epidemic and the provinces did not significantly impact ELISA-positive cats. Notably, Chon Buri exhibited a strong positive correlation (r = 0.99, p = 0.009) between positive cat sera and reported human case numbers. Additionally, the cPass™ neutralization test revealed a 3.99% (35/878) seropositivity rate. There were significant differences in numbers and proportions of positive cat sera between epidemic waves. In Samut Sakhon, a positive correlation (r = 1, p = 0.042) was noted between the proportion of positive cat sera and human prevalence. The findings emphasize the need for ongoing surveillance to comprehend SARS-CoV-2 dynamics in both human and feline populations.

4.
Acta Trop ; 254: 107199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552996

ABSTRACT

BACKGROUND: Opisthorchis viverrini infection is a significant health problem in several countries, especially Southeast Asia. The infection causes acute gastro-hepatic symptoms and also long-term infection leading to carcinogenesis of an aggressive bile duct cancer (cholangiocarcinoma; CCA). Hence, the early diagnosis of O. viverrini infection could be the way out of this situation. Still, stool examination by microscopic-based methods, the current diagnostic procedure is restricted by low parasite egg numbers in the specimen and unprofessional laboratorians. The immunological procedure provides a better chance for diagnosis of the infection. Hence, this study aims to produce single-chain variable fragment (scFv) antibodies for use as a diagnostic tool for O. viverrini infection. METHODS: This study uses phage display technologies to develop the scFv antibodies against O. viverrini cathepsin F (OvCatF). The OvCatF-deduced amino acid sequence was analyzed and predicted for B-cell epitopes used for short peptide synthesis. The synthetic peptides were used to screen the phage library simultaneously with OvCatF recombinant protein (rOvCatF). The potentiated phages were collected, rescued, and reassembled in XL1-blue Escherichia coli (E. coli) as a propagative host. The positive clones of phagemids were isolated, and the single-chain variable (scFv) fragments were sequenced, computationally predicted, and molecular docked. The complete scFv fragments were digested from the phagemid, subcloned into the pOPE101 expression vector, and expressed in XL1-blue E. coli. Indirect ELISA and Western analysis were used to verify the detection efficiency. RESULTS: The scFv phages specific to OvCatF were successfully isolated, subcloned, and produced as a recombinant protein. The recombinant scFv antibodies were purified and refolded to make functional scFv. The evaluation of specific recognition of the particular epitopes and detection limit results by both computational and laboratory performances demonstrated that all three recombinant scFv antibodies against OvCatF could bind specifically to rOvCatF, and the lowest detection concentration in this study was only one hundred nanograms. CONCLUSION: Our produced scFv antibodies will be the potential candidates for developing a practical diagnostic procedure for O. viverrini infection in humans in the future.


Subject(s)
Opisthorchis , Single-Chain Antibodies , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Opisthorchis/immunology , Animals , Antibodies, Helminth/immunology , Opisthorchiasis/immunology , Cathepsins/immunology , Epitopes/immunology , Humans , Recombinant Proteins/immunology , Cell Surface Display Techniques , Epitopes, B-Lymphocyte/immunology , Enzyme-Linked Immunosorbent Assay , Peptide Library
5.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399370

ABSTRACT

Infections caused by antibiotic-resistant bacteria pose a significant global challenge. This study explores the antibacterial effects of a bacteriophage-derived endolysin, LysAB1245, against important pathogens, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. We determined the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for all tested isolates. A time-kill study was conducted to evaluate the reduction in bacterial survival following treatment with LysAB1245. Additionally, the effects of LysAB1245 on P. aeruginosa K1455 and methicillin-resistant S. aureus (MRSA) NPRC 001R-formed biofilms were investigated. The MIC and MBC of LysAB1245 against all the tested isolates ranged from 4.68 to 9.36 µg/mL and 4.68 to 18.72 µg/mL, respectively. The time-kill study demonstrated more than a 4 log CFU/mL (99.99%) reduction in bacterial survival within 6 h of LysAB1245 treatment at 2MIC. LysAB1245 (1/8-1/2MIC) treatment significantly reduced biofilms formed by P. aeruginosa and MRSA in a concentration-dependent manner. Furthermore, scanning electron and confocal laser scanning microscopy confirmed the potential inhibition effects on 3-day established biofilms formed on abiotic surfaces upon treatment with LysAB1245 at 2MIC. The findings indicate that endolysin LysAB1245 could be employed as a new alternative therapeutic antibacterial and anti-biofilm agent for combating biofilm-related infections.

6.
PLoS One ; 19(1): e0296453, 2024.
Article in English | MEDLINE | ID: mdl-38165983

ABSTRACT

Capsular polysaccharides are considered as major virulence factors associated with the ability of multidrug-resistant (MDR) Acinetobacter baumannii to cause severe infections. In this study, LysAB1245, a novel bacteriophage-encoded endolysin consisting of a lysozyme-like domain from phage T1245 was successfully expressed, purified, and evaluated for its antibacterial activity against distinct capsular types associated with A. baumannii resistance. The results revealed a broad spectrum activity of LysAB1245 against all clinical MDR A. baumannii isolates belonging to capsular type (KL) 2, 3, 6, 10, 47, 49, and 52 and A. baumannii ATCC 19606. At 2 h following the treatment with 1.7 unit/reaction of LysAB1245, more than 3 log reduction in the numbers of bacterial survival was observed. In addition, LysAB1245 displayed rapid bactericidal activity within 30 min (nearly 3 log CFU/mL of bacterial reduction). Thermostability assay indicated that LysAB1245 was stable over a broad range of temperature from 4 to 70°C, while pH sensitivity assay demonstrated a wide range of pH from 4.5 to 10.5. Furthermore, both minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of LysAB1245 against all MDR A. baumannii isolates and A. baumannii ATCC 19606 were 4.21 µg/mL (0.1 unit/reaction). Conclusively, these results suggest that LysAB1245 possesses potential application for the treatment of nosocomial MDR A. baumannii infections.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Endopeptidases/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
7.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373012

ABSTRACT

Enterovirus A71 (EV-A71) is one of the causative agents of hand-foot-mouth disease, which can be associated with neurocomplications of the central nervous system. A limited understanding of the virus's biology and pathogenesis has led to the unavailability of effective anti-viral treatments. The EV-A71 RNA genome carries type I internal ribosomal entry site (IRES) at 5' UTR that plays an essential role in the viral genomic translation. However, the detailed mechanism of IRES-mediated translation has not been elucidated. In this study, sequence analysis revealed that the domains IV, V, and VI of EV-A71 IRES contained the structurally conserved regions. The selected region was transcribed in vitro and labeled with biotin to use as an antigen for selecting the single-chain variable fragment (scFv) antibody from the naïve phage display library. The so-obtained scFv, namely, scFv #16-3, binds specifically to EV-A71 IRES. The molecular docking showed that the interaction between scFv #16-3 and EV-A71 IRES was mediated by the preferences of amino acid residues, including serine, tyrosine, glycine, lysine, and arginine on the antigen-binding sites contacted the nucleotides on the IRES domains IV and V. The so-produced scFv has the potential to develop as a structural biology tool to study the biology of the EV-A71 RNA genome.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Single-Chain Antibodies , Humans , Enterovirus/genetics , Single-Chain Antibodies/genetics , Enterovirus A, Human/genetics , Internal Ribosome Entry Sites/genetics , Molecular Docking Simulation , Antigens, Viral/genetics
8.
PLoS One ; 17(11): e0278145, 2022.
Article in English | MEDLINE | ID: mdl-36441688

ABSTRACT

Coronavirus disease 2019 (COVID-19), a highly contagious pathogenic viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly and remains a challenge to global public health. COVID-19 patients manifest various symptoms from mild to severe cases with poor clinical outcomes. Prognostic values of novel markers, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and C-reactive protein to lymphocyte ratio (CLR) calculated from routine laboratory parameters have recently been reported to predict severe cases; however, whether this investigation can guide oxygen therapy in COVID-19 patients remains unclear. In this study, we assessed the ability of these markers in screening and predicting types of oxygen therapy in COVID-19 patients. The retrospective data of 474 COVID-19 patients were categorized into mild and severe cases and grouped according to the types of oxygen therapy requirement, including noninvasive oxygen support, high-flow nasal cannula and invasive mechanical ventilator. Among the novel markers, the ROC curve analysis indicated a screening cutoff of CRP ≥ 30.0 mg/L, NLR ≥ 3.0 and CLR ≥ 25 in predicting the requirement of any type of oxygen support. The NLR and CLR with increasing cut-off values have discriminative power with high accuracy and specificity for more effective oxygen therapy with a high-flow nasal cannula (NLR ≥ 6.0 and CLR ≥ 60) and mechanical ventilator (NLR ≥ 8.0 and CLR ≥ 80). Our study thus identifies potential markers to differentiate the suitable management of oxygen therapy in COVID-19 patients at an earlier time for improving disease outcomes with limited respiratory support resources.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Oxygen , Retrospective Studies , Oxygen Inhalation Therapy , Biomarkers , C-Reactive Protein
9.
Sci Rep ; 12(1): 12846, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896602

ABSTRACT

Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease associated with neurological complications in young children. Currently, there is no specific treatment for EV-A71 infection due to the inadequate information on viral biology and neuropathogenesis. Among enteroviruses, nonstructural 3A protein mediates the formation of replication organelles which plays a major role in viral RNA synthesis and assembly. Although enteroviral 3A proteins have been intensively studied, the data on EV-A71 3A, especially in neuronal cells, are still limited. In this study, PRSS3 (mesotrypsinogen, also known as brain trypsinogen) was identified as EV-A71 3A-interacting counterpart from the transfected human neuroblastoma SH-SY5Y cells by pull-down assay and liquid chromatography tandem mass spectrometry. It was confirmed that PRSS3 variant 3 derived from human SH-SY5Y cells had the physical interaction with EV-A71 3A. Importantly, the role of PRSS3 in EV-A71 replication was verified by overexpression and siRNA-mediated gene silencing approaches. The detailed mechanism of the PRSS3 involved in EV-A71 replication and neuropathogenesis warrants further experimental elucidation. In conclusion, this study has discovered a novel EV-A71 3A interacting protein that offers the opportunity to study the neuropathogenesis of the infection which paves the way for developing a specific and effective treatment for the disease.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Neuroblastoma , Antigens, Viral , Child , Child, Preschool , Enterovirus A, Human/physiology , Enterovirus Infections/metabolism , Humans , Proteins , Trypsin , Virus Replication/physiology
10.
J Glob Antimicrob Resist ; 30: 319-325, 2022 09.
Article in English | MEDLINE | ID: mdl-35732265

ABSTRACT

OBJECTIVES: The present study aims to investigate the population structure of Thai Mycobacterium tuberculosis (MTB) isolates and anti-tuberculosis (TB) drug resistance and to determine the most frequent genetic mutations conferring isoniazid (INH) resistance. METHODS: Genomic DNA from 287 MTB clinical isolates were extracted and used for spoligotyping, amplification and sequencing analysis of the region of different (RD) 105, and of the INH resistance (IR) associated genes, inhA, katG and oxyR-ahpC genes. RESULTS: Eighty-one clinical isolates were resistant to at least one first-line drug; 53 of these were resistant to INH. All strains were classified into three lineages based on their spoligotypes: East Asia (EA)/Beijing, Indo-Oceanic (IO), and Euro-American (EuA). EA and IO lineages revealed a strong association with anti-TB drug resistance (P = 0.005 and 0.013, respectively). A total of 33 mutations were found among IR isolates, which for 28 (84.8%), 3 (9.1%), and 2 (6.1%) occurred in katG, inhA, and oxyR-ahpC genes, respectively. Moreover, the most common mutations found were 54.7% of IR presented Ser315Thr at katG (54.7%) and C-15T at inhA (15.1%) presented. This result suggests the involvement of other genetic markers or other mechanisms of resistance. CONCLUSION: This study provides information about strains diversity, drug resistance profiles, and their possible association. EA and IO lineages were predominant in Thailand, and they were highly associated with anti-TB drug resistance. Testing two mutations including katGSer315Thr and inhA-15C→T could detect 68% of the IR strains.


Subject(s)
Isoniazid , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , DNA, Bacterial/genetics , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Thailand
11.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35455440

ABSTRACT

Nineteen bacteriophages against five main capsular types of multidrug-resistant Acinetobacter baumannii were isolated from tertiary care hospital sewage. Eight representative phages from each capsular type were characterized and tested for their biological properties. The biological features revealed that phages T1245, T444, and T515 had a large burst size of more than 420 pfu/mL, together with a short latent period lasting less than 6 min, and were readily adsorbed to a bacterial host within 10 min. Moreover, these phages demonstrated host specificity and stability over a broad range of temperatures (-20 to 60 °C) and pH (5.0-9.0). A whole-genome analysis of six lytic and two temperate phages revealed high genomic similarity with double-stranded DNA between 40 and 50 kb and G + C content of 38-39%. The protein compositions disclosed the absence of toxin-coding genes. The phylogenic results, together with morphological micrographs, confirmed that three selected phages (T1245, T444, and T515) belong to the Podoviridae family within the order Caudovirales. The biological data and bioinformatics analysis indicated that these novel A. baumannii phages possess important enzymes, including depolymerase and endolysin, which could be further developed as promising alternative antibacterial agents to control A. baumannii infections.

12.
Sci Rep ; 12(1): 1765, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110649

ABSTRACT

Infection with enterovirus-A71 (EV-A71) can cause hand-foot-mouth disease associated with fatal neurological complications. The host response to EV-A71 has not yet been fully elucidated, thus, hampering the development of a precise therapeutic approach. A nonstructural 2B protein of EV-A71 has been reported to involve with calcium dysregulation and apoptosis induction in human neuroblastoma SH-SY5Y cells. However, the molecular mechanism has not been delineated. To address this, comprehensive study of the gene expression from SH-SY5Y cells transfected with EV-A71 2B was carried out by RNA sequencing and transcriptomic analysis. It was found that the signature of the upregulated genes of SH-SY5Y cells expressing EV-A71 2B involved the Ca2+-related signaling pathways participating gene expression, inflammatory response, apoptosis, and long-term potentiation of the neuron. Protein-protein interaction network analysis revealed that the products encoded by CCL2, RELB, BIRC3, and TNFRSF9 were the most significant hub proteins in the network. It indicated that EV-A71 2B protein might play a role in immunopathogenesis of the central nervous system (CNS) which probably associated with the non-canonical NF-κB pathway. The data suggest that transcriptomic profiling can provide novel information source for studying the neuropathogenesis of EV-A71 infection leading to development of an effective therapeutic measure for CNS complications.


Subject(s)
Biomarkers/analysis , Gene Expression Regulation , Neuroblastoma/metabolism , Protein Interaction Maps , Transcriptome , Viral Nonstructural Proteins/administration & dosage , Enterovirus A, Human/physiology , Enterovirus Infections/virology , Gene Expression Profiling , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Tumor Cells, Cultured
13.
Proteins ; 90(3): 898-904, 2022 03.
Article in English | MEDLINE | ID: mdl-34677871

ABSTRACT

3-Nitropropanoic acid (3NP), a bioactive fungal natural product, was previously demonstrated to inhibit growth of Mycobacterium tuberculosis. Here we demonstrate that 3NP inhibits the 2-trans-enoyl-acyl carrier protein reductase (InhA) from Mycobacterium tuberculosis with an IC50 value of 71 µM, and present the crystal structure of the ternary InhA-NAD+ -3NP complex. The complex contains the InhA substrate-binding loop in an ordered, open conformation with Tyr158, a catalytically important residue whose orientation defines different InhA substrate/inhibitor complex conformations, in the "out" position. 3NP occupies a hydrophobic binding site adjacent to the NAD+ cofactor and close to that utilized by the diphenyl ether triclosan, but binds predominantly via electrostatic and water-mediated hydrogen-bonding interactions with the protein backbone and NAD+ cofactor. The identified mode of 3NP binding provides opportunities to improve inhibitory activity toward InhA.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/chemistry , Nitro Compounds/chemistry , Oxidoreductases/antagonists & inhibitors , Propionates/chemistry , Binding Sites , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , NAD/chemistry , Phenyl Ethers/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship
14.
PeerJ ; 9: e10743, 2021.
Article in English | MEDLINE | ID: mdl-33604179

ABSTRACT

Streptococcus suis is a Gram-positive bacterial pathogen of pigs and an emerging zoonotic pathogen. It has become increasingly resistant to multiple classes of antibiotics. New drug candidates and knowledge of their targets are needed to combat antibiotic-resistant S. suis. In this study, the open-source Pathogen Box compound library was screened. Thirty hits that effectively inhibited S. suis growth at 10 µM were identified. Among the most potent hits, MMV675968 (a diaminoquinazoline analog) was shown to target S. suis dihydrofolate reductase (SsDHFR) via (1) growth inhibition of an E. coli surrogate whose growth is dependent on exogenously expressed SsDHFR and (2) inhibition of in vitro SsDHFR activity. Thymidine supplement is able to reverse growth inhibition by MMV675968 in both E. coli surrogate and S. suis, indicating that a thymidine-related pathway is a major target of MMV675968. Comparison of MMV675968 with seven DHFR inhibitors representing different core structures revealed that bicyclic 2,4-diaminopyrimidines with long and flexible side chains are highly effective in inhibiting SsDHFR and S. suis growth. MMV675968 and related compounds thus may serve as starting points for developing antibiotics against drug resistant S. suis.

15.
Infect Genet Evol ; 87: 104674, 2021 01.
Article in English | MEDLINE | ID: mdl-33316429

ABSTRACT

Streptococcus suis, a zoonotic bacterial pathogen, has negative economic impacts on both intensive swine production and human health worldwide. Whole-genome sequencing and comparative genomic analysis have been widely used for comprehensive classification and investigation of the genetic basis of several S. suis strains obtained from distinct hosts in different geographic areas, revealing great genetic diversity of this zoonotic pathogen. In this study, whole-genome sequences of antibiotic-resistant S. suis strains isolated from human patients (2 strains), diseased pigs (4 strains), and asymptomatic pigs (3 strains) in Thailand were compared with known genomes of 1186 S. suis strains. Single-nucleotide polymorphism-based phylogenetic analysis indicated that the Thai-isolated S. suis strains have close genetic relatedness to S. suis strains isolated from Canada, China, Denmark, Netherlands, United Kingdom, and United States of America. The genome analysis revealed genes conferring antibiotic resistance (aad(6), ant(6)-Ia, ermB, tet(O), patB, and sat4) and gene clusters (aph(3')-IIIa and aac(6')-Ie-aph(2″)-Ia) associated with aminoglycoside, macrolide, and fluoroquinolone resistance in S. suis in Thailand. This work provides additional resources for future genomic epidemiology investigation of S. suis.


Subject(s)
Drug Resistance, Microbial/genetics , Genetic Variation , Geography , Phylogeny , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Viral Zoonoses/genetics , Virulence/genetics , Animals , Canada , China , Genome-Wide Association Study , Humans , Imidoesters , Microbial Sensitivity Tests , Netherlands , Streptococcal Infections/epidemiology , Swine , Swine Diseases/epidemiology , Swine Diseases/microbiology , Thailand/epidemiology , United Kingdom , United States
16.
AMB Express ; 10(1): 110, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32514868

ABSTRACT

Rhodomyrtone has been recently demonstrated to possess a novel antibiotic mechanism of action against Gram-positive bacteria which involved the multiple targets, resulting in the interference of several bacterial biological processes including the cell division. The present study aims to closely look at the downstream effect of rhodomyrtone treatment on nucleoid segregation in Streptococcus suis, an important zoonotic pathogen. The minimum inhibition concentration (MIC) and the minimum bactericidal concentration (MBC) values of rhodomyrtone against the recombinant S. suis ParB-GFP, a nucleoid segregation reporter strain, were 0.5 and 1 µg/ml, respectively, which were equivalent to the potency of vancomycin. Using the fluorescence live-cell imaging, we demonstrated that rhodomyrtone at 2× MIC caused incomplete nucleoid segregation and septum misplacement, leading to the generation of anucleated cells. FtsZ immune-staining of rhodomyrtone-treated S. suis for 30 min revealed that the large amount of FtsZ was trapped in the region of high fluidity membrane and appeared to be able to polymerize to form a complete Z-ring. However, the Z-ring was shifted away from the midcell. Transmission electron microscopy further confirmed the disruption of nucleoid segregation and septum misplacement at 120 min following the rhodomyrtone treatment. Asymmetric septum formation resulted in either generation of minicells without nucleoid, septum formed over incomplete segregated nucleoid (guillotine effect), or formation of multi-constriction of Z-ring within a single cell. This finding spotlights on antibacterial mechanism of rhodomyrtone involves the early stage in bacterial cell division process.

17.
Front Microbiol ; 11: 548, 2020.
Article in English | MEDLINE | ID: mdl-32328045

ABSTRACT

Antibiotic resistant strains of Acinetobacter baumannii are responsible for a large and increasing burden of nosocomial infections in Thailand and other countries of Southeast Asia. New approaches to their control and treatment are urgently needed and an attractive strategy is to remove the bacterial polysaccharide capsule, and thus the protection from the host's immune system. To examine phylogenetic relationships, distribution of capsule chemotypes, acquired antibiotic resistance determinants, susceptibility to complement and other traits associated with systemic infection, we sequenced 191 isolates from three tertiary referral hospitals in Thailand and used phenotypic assays to characterize key aspects of infectivity. Several distinct lineages were circulating in three hospitals and the majority belonged to global clonal group 2 (GC2). Very high levels of resistance to carbapenems and other front-line antibiotics were found, as were a number of widespread plasmid replicons. A high diversity of capsule genotypes was encountered, with only three of these (KL6, KL10, and KL47) showing more than 10% frequency. Almost 90% of GC2 isolates belonged to the most common capsule genotypes and were fully resistant to the bactericidal action of human serum complement, most likely protected by their polysaccharide capsule, which represents a key determinant of virulence for systemic infection. Our study further highlights the importance to develop therapeutic strategies to remove the polysaccharide capsule from extensively drug-resistant A. baumanii during the course of systemic infection.

18.
J Neurovirol ; 26(2): 201-213, 2020 04.
Article in English | MEDLINE | ID: mdl-31933192

ABSTRACT

Enterovirus A71 (EV-A71) is one of the causative agents causing the hand-foot-mouth disease which associated with fatal neurological complications. Several sporadic outbreaks of EV-A71 infections have been recently reported from Asia-Pacific regions and potentially established endemicity in the area. Currently, there is no effective vaccine or antiviral drug for EV-A71 available. This may be attributable to the limited information about its pathogenesis. In this study, the recombinant nonstructural 2B protein of EV-A71 was successfully produced in human neuroblastoma SH-SY5Y cells and evaluated for its effects on induction of the cell apoptosis and the pathway involved. The EV-A71 2B-transfected SH-SY5Y cells showed significantly higher difference in the cell growth inhibition than the mock and the irrelevant protein controls. The transfected SH-SY5Y cells underwent apoptosis and showed the significant upregulation of caspase-9 (CASP9) and caspase-12 (CASP12) genes at 3- and 24-h post-transfection, respectively. Interestingly, the level of cytosolic Ca2+ was significantly elevated in the transfected SH-SY5Y cells at 6- and 12-h post-transfection. The caspase-9 is activated by mitochondrial signaling pathway while the caspase-12 is activated by ER signaling pathway. The results suggested that EV-A71 2B protein triggered transient increase of the cytosolic Ca2+ level and associated with ER-mitochondrial interactions that drive the caspase-dependent apoptosis pathways. The detailed mechanisms warrant further studies for understanding the implication of EV-A71 infection in neuropathogenesis. The gained knowledge is essential for the development of the effective therapeutics and antiviral drugs.


Subject(s)
Apoptosis/physiology , Enterovirus A, Human/metabolism , Enterovirus Infections/virology , Neurons/virology , Viral Proteins/metabolism , Calcium/metabolism , Cell Line, Tumor , Cytoplasm/metabolism , Humans , Neurons/metabolism
19.
J Chem Inf Model ; 60(1): 226-234, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31820972

ABSTRACT

The enoyl-acyl carrier protein reductase InhA of Mycobacterium tuberculosis is an attractive, validated target for antituberculosis drug development. Moreover, direct inhibitors of InhA remain effective against InhA variants with mutations associated with isoniazid resistance, offering the potential for activity against MDR isolates. Here, structure-based virtual screening supported by biological assays was applied to identify novel InhA inhibitors as potential antituberculosis agents. High-speed Glide SP docking was initially performed against two conformations of InhA differing in the orientation of the active site Tyr158. The resulting hits were filtered for drug-likeness based on Lipinski's rule and avoidance of PAINS-like properties and finally subjected to Glide XP docking to improve accuracy. Sixteen compounds were identified and selected for in vitro biological assays, of which two (compounds 1 and 7) showed MIC of 12.5 and 25 µg/mL against M. tuberculosis H37Rv, respectively. Inhibition assays against purified recombinant InhA determined IC50 values for these compounds of 0.38 and 0.22 µM, respectively. A crystal structure of the most potent compound, compound 7, bound to InhA revealed the inhibitor to occupy a hydrophobic pocket implicated in binding the aliphatic portions of InhA substrates but distant from the NADH cofactor, i.e., in a site distinct from those occupied by the great majority of known InhA inhibitors. This compound provides an attractive starting template for ligand optimization aimed at discovery of new and effective compounds against M. tuberculosis that act by targeting InhA.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Discovery , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Reproducibility of Results , Structure-Activity Relationship
20.
BMC Vet Res ; 15(1): 5, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606175

ABSTRACT

BACKGROUND: Prophylaxis and treatment of emerging zoonotic Streptococcus suis infection in agricultural and healthcare settings mainly rely on antibiotics. However, continued use of antibiotics contributing to emergence and widespread of antibiotic resistant S. suis becomes a significant challenge in many endemic countries, including Thailand. Meanwhile, the knowledge of antibiotic susceptibility patterns of bacterial pathogens is required for overcoming the antimicrobial resistance problem, the information of antibiotic susceptibility of S. suis strains isolated in Thailand remains limited. This study aims to assess the susceptibility of Thai-isolated S. suis strains to different antibiotic classes in order to gain an insight into the distribution of antibiotic-resistant patterns of S. suis strains in different regions of Thailand. RESULTS: This study revealed the antimicrobial resistance and multidrug resistance of 262 S. suis strains isolated in different regions of Thailand. Susceptibility testing indicated widespread resistance to macrolides and tetracyclines of S. suis strains in the country. Beta-lactam antibiotic drugs (including cefotaxime and ceftiofur), vancomycin, chloramphenicol, as well as florfenicol were potentially the most effective therapeutic drugs for the treatment of S. suis infection in both pigs and humans. High prevalence of intermediate susceptibility of S. suis isolated from asymptomatic pigs for penicillin G, gentamicin, enrofloxacin, and norfloxacin could be the premise of the emergence of S. suis antibiotic resistance. Resistance was also found in S. suis strains isolated from asymptomatic pigs indicating that they could act as reservoirs of antibiotic resistance genes. CONCLUSIONS: To the best of our knowledge, this is the first report on antimicrobial resistance of a large collection of S. suis strains isolated from pigs and humans in Thailand. It revealed the multidrug resistance of S. suis strains in pigs and humans. The information gained from this study raises an awareness and encourage best practices of appropriate antibiotic drug prescribing and use among human health and agriculture sectors.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Streptococcal Infections/veterinary , Streptococcus suis/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple , Humans , Microbial Sensitivity Tests/veterinary , Streptococcal Infections/drug therapy , Streptococcus suis/isolation & purification , Swine/microbiology , Swine Diseases/drug therapy , Swine Diseases/microbiology , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...