Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028297

ABSTRACT

Light and pH dual-responsive ion transporters offer better applicability for cancer due to higher tunability and low cytotoxicity. Herein, we demonstrate the development of pH-responsive ß-carboline-based ionophores and photocleavable-linker appended ß-carboline-based proionophores to facilitate the controlled transport of Cl- across membranes, leading to apoptotic and autophagic cancer cell death.

2.
Org Biomol Chem ; 22(1): 114-119, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38050426

ABSTRACT

A molecular switch was developed to recognize and transport Cl- across lipid bilayers. The XRD-crystal structure and NOESY NMR spectra of a potent 4-aminoquinazoline analogue confirmed Cl--induced conformation changes. Systematic biophysical studies revealed that the quinazoline moiety forms cooperative interactions of H+ and Cl- ions with the thiourea moiety, resulting in the transport of H+/Cl- across the membranes. A pH-dependent analysis revealed that the transport of Cl- by the potent compound increased in an acidic environment. The potent compound could also transport H+/Cl- across Gram-positive bacteria, leading to antibacterial activities.


Subject(s)
Chlorides , Lipid Bilayers , Chlorides/chemistry , Ion Transport , Lipid Bilayers/chemistry , Halogens , Anti-Bacterial Agents/pharmacology , Power, Psychological
3.
Chem Commun (Camb) ; 59(85): 12759-12762, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37811603

ABSTRACT

Integrin-mediated cellular delivery was attempted to optimize practical applications of hydrophobic ionophores. The potent ionophore preferentially transports H+/Cl- across the lipid bilayers following a symport mechanism. The RGD-peptide-appended tag was stimulated by glutathione to generate the active ionophore, prompting the transport of Cl- under the cellular environment.


Subject(s)
Lipid Bilayers , Oligopeptides , Ionophores/chemistry , Ion Transport , Lipid Bilayers/chemistry , Biological Transport , Oligopeptides/chemistry
4.
J Med Chem ; 66(16): 11078-11093, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37466499

ABSTRACT

The increasing resistance of bacteria to commercially available antibiotics threatens patient safety in healthcare settings. Perturbation of ion homeostasis has emerged as a potential therapeutic strategy to fight against antibacterial resistance and other channelopathies. This study reports the development of 8-aminoquinoline (QN) derivatives and their transmembrane Zn2+ transport activities. Our findings showed that a potent QN-based Zn2+ transporter exhibits promising antibacterial properties against Gram-positive bacteria with reduced hemolytic activity and cytotoxicity to mammalian cells. Furthermore, this combination showed excellent in vivo efficacy against Staphylococcus aureus. Interestingly, this combination prevented bacterial resistance and restored susceptibility of gentamicin and methicillin-resistant S. aureus to commercially available ß-lactam and other antibiotics that had lost their activity against the drug-resistant bacterial strain. Our findings suggest that the transmembrane transport of Zn2+ by QN derivatives could be a promising strategy to combat bacterial infections and restore the activity of other antibiotics.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Quinolines , Staphylococcal Infections , Animals , Humans , Zinc , Ionophores/therapeutic use , Thiourea/pharmacology , Thiourea/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use , Microbial Sensitivity Tests , Mammals
5.
Chem Commun (Camb) ; 59(48): 7407-7410, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37233195

ABSTRACT

Meso-3,5-bis(trifluoromethyl)phenyl picket calix[4]pyrrole 1 displays excellent fluoride anion transport activity across artificial lipid bilayers showing EC50 = 2.15 µM (at 450 s in EYPC vesicle) with high fluoride over chloride ion selectivity. The high fluoride selectivity of 1 was ascribed to the formation of a sandwich type π-anion-π interaction complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...