Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 681: 305-311, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31103667

ABSTRACT

The Indian capital Delhi experienced an environmental emergency in early November 2017 when levels of toxic PM2.5 particles surpassed WHO guidelines by 25 times (11 times by Indian Standards) for a prolonged period of a week (peak 24 h average ~650 µg/m3). We hereby demonstrate the role that monsoon dynamics played in linking and mixing dust emitted from a large natural dust storm, 3000 km away in the Middle East, with smoke from agriculture fires in northwest India. This dust and smoke rich air was then transported to Delhi where, under stagnant conditions, it mixed with local emissions resulting in very high pollution levels. The heavy aerosol-laden air altered the land-skin surface air temperature difference resulting in increased surface wind speeds, favouring faster dispersion and an unusual sharp decline in PM2.5 (PM2.5-110 µg/m3). Understanding the multi-scale nature of such events is important in improving our abilities to forecast these events and in developing effective air quality management strategies for the mega cities.

2.
J Environ Sci (China) ; 43: 265-272, 2016 May.
Article in English | MEDLINE | ID: mdl-27155433

ABSTRACT

A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620µg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390µg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Holidays , Air Pollution/statistics & numerical data , Carbon Monoxide/analysis , India , Nitrogen Oxides/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...