Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rep U S ; 2019: 1355-1362, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-32318314

ABSTRACT

A motion-planning problem's setup can drastically affect the quality of solutions returned by the planner. In this work we consider optimizing these setups, with a focus on doing so in a computationally-efficient fashion. Our approach interleaves optimization with motion planning, which allows us to consider the actual motions required of the robot. Similar prior work has treated the planner as a black box: our key insight is that opening this box in a simple-yet-effective manner enables a more efficient approach, by allowing us to bound the work done by the planner to optimizer-relevant computations. Finally, we apply our approach to a surgically-relevant motion-planning task, where our experiments validate our approach by more-efficiently optimizing the fixed insertion pose of a surgical robot.

2.
Proc ACM SIGCHI ; 2016: 35-42, 2016 Mar.
Article in English | MEDLINE | ID: mdl-30035277

ABSTRACT

Assistive robotic arms are increasingly enabling users with upper extremity disabilities to perform activities of daily living on their own. However, the increased capability and dexterity of the arms also makes them harder to control with simple, low-dimensional interfaces like joysticks and sip-and-puff interfaces. A common technique to control a high-dimensional system like an arm with a low-dimensional input like a joystick is through switching between multiple control modes. However, our interviews with daily users of the Kinova JACO arm identified mode switching as a key problem, both in terms of time and cognitive load. We further confirmed objectively that mode switching consumes about 17.4% of execution time even for able-bodied users controlling the JACO. Our key insight is that using even a simple model of mode switching, like time optimality, and a simple intervention, like automatically switching modes, significantly improves user satisfaction.

3.
Robot Sci Syst ; 20152015 Jul.
Article in English | MEDLINE | ID: mdl-30637295

ABSTRACT

In shared autonomy, user input and robot autonomy are combined to control a robot to achieve a goal. Often, the robot does not know a priori which goal the user wants to achieve, and must both predict the user's intended goal, and assist in achieving that goal. We formulate the problem of shared autonomy as a Partially Observable Markov Decision Process with uncertainty over the user's goal. We utilize maximum entropy inverse optimal control to estimate a distribution over the user's goal based on the history of inputs. Ideally, the robot assists the user by solving for an action which minimizes the expected cost-to-go for the (unknown) goal. As solving the POMDP to select the optimal action is intractable, we use hindsight optimization to approximate the solution. In a user study, we compare our method to a standard predict-then-blend approach. We find that our method enables users to accomplish tasks more quickly while utilizing less input. However, when asked to rate each system, users were mixed in their assessment, citing a tradeoff between maintaining control authority and accomplishing tasks quickly.

SELECTION OF CITATIONS
SEARCH DETAIL
...