Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 1(3): 191-201, 2007 Oct.
Article in English | MEDLINE | ID: mdl-19206649

ABSTRACT

A series of nanoscale chemical patterning methods based on soft and hybrid nanolithographies have been characterized using scanning electron microscopy with corroborating evidence from scanning tunneling microscopy and lateral force microscopy. We demonstrate and discuss the unique advantages of the scanning electron microscope as an analytical tool to image chemical patterns of molecules highly diluted within a host self-assembled monolayer and to distinguish regions of differential mass coverage in patterned self-assembled monolayers. We show that the relative contrast of self-assembled monolayer patterns in scanning electron micrographs depends on the operating primary electron beam voltage, monolayer composition, and monolayer order, suggesting that secondary electron emission and scattering can be used to elucidate chemical patterns.


Subject(s)
Microscopy, Electron, Scanning/methods , Nanotechnology , Adamantane/chemistry , Fatty Acids/chemistry , Microscopy, Scanning Tunneling , Palmitic Acids/chemistry , Reproducibility of Results , Sulfhydryl Compounds/chemistry
2.
Langmuir ; 22(18): 7631-8, 2006 Aug 29.
Article in English | MEDLINE | ID: mdl-16922543

ABSTRACT

Layer-by-layer (LBL) growth of terpyridinyl ligands with a range of metal ions is reported. Monolayers of mercaptophenyl terpyridine on gold were used to initiate LBL assembly by complexing the first layer of metal ions. Tetra-2-pyridinylpyrazine was used as a linking ligand between subsequent metal ion layers. The assembly of the terpyridines with 21 different metals was evaluated using UV absorbance spectroscopy, variable-angle spectroscopic ellipsometry, and atomic force microscopy. Successful LBL growth appears to depend on the ionic radius of the metal ion. Metals that formed multilayered LBL structures were primarily limited to a small range of effective ionic radii between 66 and 73 pm. Metal ions with smaller ionic radii usually formed initial layers but seldom exhibited consistent LBL growth, while ions with radii larger than 73 nm generally did not demonstrate any evidence of LBL growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...