Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 82(3): 033103, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456714

ABSTRACT

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH(4))(2) and nano-LiBH(4)-LiNH(2)-MgH(2) hydrogen storage systems at elevated temperatures and pressures are reported.

2.
J Nanosci Nanotechnol ; 9(8): 4561-5, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19928118

ABSTRACT

We report for the first time the reversible hydrogen storage behavior at room temperature in polyaniline nanofibers. The rate of hydrogen sorption during the initial run was very rapid and an extended plateau pressure of about 30 bars was obtained from the pressure-composition isotherm profiles of these polyaniline nanofibers. The reversible cycling capacity of approximately 3-4 wt% was demonstrated at room temperature and has been attributed to the unique nanofibrous microstructural and surface properties.

3.
J Phys Chem B ; 109(3): 1168-73, 2005 Jan 27.
Article in English | MEDLINE | ID: mdl-16851077

ABSTRACT

We report the first measurements of elastic modulus and energy dissipation in Ti-doped and undoped sodium aluminum hydride. It is shown that the chemical reactions that occur by varying the sample temperatures or by aging most sensitively affect the elastic constants, such that the modulus variations allow the time and temperature evolution of decomposition to be monitored. After a well-defined thermal treatment at 436 K, a thermally activated relaxation process appears at 70 K in the kilohertz range, denoting the existence of a new species, likely involving hydrogen, having a very high mobility, that is, 10(3) jumps/s at the peak temperature corresponding to a relaxation rate of about 10(11) s(-1) at room temperature. The activation energy of the process is 0.126 eV and the preexponential factor 7 x 10(-14) s, which is typical of point defect relaxation. The peak is very broad with respect to a single Debye process, indicating strong interaction or/and multiple jumping type of the mobile entity. The present data suggest that the models aiming at interpreting the decomposition reactions and kinetics should take into account the indicated point-defect dynamics and stoichiometry defects.

4.
J Phys Chem B ; 109(33): 15780-5, 2005 Aug 25.
Article in English | MEDLINE | ID: mdl-16853003

ABSTRACT

NaAlH4 samples with Ti additives (TiCl3, TiF3, and Ti(OBu)4) have been investigated by synchrotron X-ray diffraction in order to unveil the nature of Ti. No crystalline Ti-containing phases were observed after ball milling of NaAlH4 with the additives, neither as a solid solution in NaAlH4 nor as secondary phases. However, after cycling, a high-angle shoulder of Al is observed in the same position with 10% TiCl3 as that with 2% Ti(OBu)4, but with considerably higher intensity, indicating that the shoulder is caused by Ti. After prolonged reabsorption, there is only a small fraction of free Al phase left to react with Na3AlH6, whereas the shoulder caused by Al(1-y)Ti(y) is dominating. The Ti-containing phase causing the shoulder therefore contains less Ti than Al3Ti, and the aluminum in this phase is too strongly bound to react with Na3AlH6 to form NaAlH4. The composition of the Al(1-y)Ti(y) phase is estimated from quantitative phase analysis of powder X-ray diffraction data to be Al(0.85)Ti(0.15). Formation of this phase may explain the reduction of capacity beyond the theoretical reduction from the dead weight of the additive and the reaction between the additive and NaAlH4.

SELECTION OF CITATIONS
SEARCH DETAIL
...