Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 206: 117725, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34653799

ABSTRACT

Candidatus Accumulibacter phosphatis (CAP) and its clade-level micro-diversity has been associated with and implicated in functional differences in phosphorus removal performance in enhanced biological phosphorus removal (EBPR) systems. Side-stream EBPR (S2EBPR) is an emerging process that has been shown to present a suite of advantages over the conventional EBPR design, however, large knowledge gaps remain in terms of its underlying ecological mechanisms. Here, we compared and revealed the higher-resolution differences in microbial ecology of CAP between a full-scale side-stream EBPR configuration and a conventional A2O EBPR process that were operated in parallel and with the same influent feed. Even though the relative abundance of CAP, revealed by 16S rRNA gene amplicon sequencing, was similar in both treatment trains, a clade-level analysis, using combined 16S rRNA-gene based amplicon sequencing and oligotyping analysis and metagenomics analysis, revealed the distinct CAP microdiversity between the S2EBPR and A2O configurations that likely attributed to the improved performance in S2EBPR in comparison to conventional EBPR. Furthermore, genome-resolved metagenomics enabled extraction of three metagenome-assembled genomes (MAGs) belonging to CAP clades IIB (RCAB4-2), IIC (RC14) and II (RC18), from full-scale EBPR sludge for the first time, including a distinct Ca. Accumulibacter clade that is dominant and associated only with the S2EBPR configuration. The results also revealed the temporally increasing predominance of RC14, which belonged to Clade IIC, during the implementation of the S2EBPR configuration. Finally, we also show the existence of previously uncharacterized diversity of clades of CAP, namely the clades IIB and as yet unidentified clade of type II, in full-scale EBPR communities, highlighting the unknown diversity of CAP communities in full-scale EBPR systems.


Subject(s)
Metagenomics , Phosphorus , Bioreactors , Phylogeny , RNA, Ribosomal, 16S/genetics , Rivers , Sewage
2.
AMB Express ; 7(1): 146, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28697582

ABSTRACT

Recently, the use of phototrophs for wastewater treatment has been revisited because of new approaches to separate them from effluent streams. One manifestation uses oxygenic photogranules (OPGs) which are dense, easily-settleable granular biofilms of cyanobacteria, which surrounding populations of heterotrophs, autotrophs, and microalgae. OPGs can remove COD and nitrogenous compounds without external aeration. To better grow and maintain biomass in the proposed wastewater process, this study seeks to understand the factors that contribute to successful granulation. Availability of initial inorganic nitrogen, particularly ammonium, was associated with successful cultivation of OPGs. In the first days of granulation, a decrease in ammonium coupled with an increase in a cyanobacterial-specific 16S rRNA gene, may suggest that ammonium was assimilated in cyanobacteria offering a competitive environment for growth. Though both successful and unsuccessful OPG formation demonstrated a shift from non-phototrophic bacterial dominated communities on day 0 to cyanobacterial dominated communities on day 42, the successful community had a greater relative abundance (46%) of OTUs associated with genera Oscillatoria and Geitlernema than the unsuccessful community (27%), supporting that filamentous cyanobacteria are essential for successful OPG formation. A greater concentration of chlorophyll b in the unsuccessful OPG formation suggested a greater abundance of algal species. This study offers indicators of granulation success, notably availability of inorganic nitrogen and chlorophyll a and b concentrations for monitoring the health and growth of biomass for a potential OPG process.

3.
Environ Sci Technol ; 51(9): 5334-5342, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28374997

ABSTRACT

A poorly understood phenomenon with a potentially significant impact on electron recovery is competition in microbial fuel cells (MFC) between anode-respiring bacteria and microorganisms that use other electron acceptors. Nitrate is a constituent of different wastewaters and can act as a competing electron acceptor in the anode. Studies investigating the impact of competition on population dynamics in mixed communities in the anode are lacking. Here, we investigated the impact of nitrate at different C/N ratios of 1.8, 3.7, and 7.4 mg C/mg N on the electrochemical performance and the biofilm community in mixed-culture chemostat MFCs. The electrochemical performance of the MFC was not affected under electron donor non-limiting conditions, 7.4 mg C/mg N. At lower C/N, electron donor limiting and ratio electron recovery were significantly affected. The electrochemical performance recovered upon removal of nitrate at 3.7 mg C/mg N but did not at 1.8 mg C/mg N. Microbial community analysis showed a decrease in Deltaproteobacteria accompanied by an increase in Betaproteobacteria in response to nitrate at low C/N ratios and no significant changes at 7.4 mg C/mg N. Transcriptional analysis showed increased transcription of nirK and nirS genes during nitrate flux, suggesting that denitrification to N2 and not facultative nitrate reduction by Geobacter spp. might be the primary response to perturbation with nitrate.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrodes , Denitrification , Geobacter , Nitrates
SELECTION OF CITATIONS
SEARCH DETAIL
...