Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 7(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36136659

ABSTRACT

Hospital workers are at high risk of contact with COVID-19 patients. Currently, there is no evidence-based, comprehensive risk assessment tool for healthcare-related exposure; so, we aimed to identify independent factors related to COVID-19 infection in hospital workers following workplace exposure(s) and construct a risk prediction model. We analyzed the COVID-19 contact tracing dataset from 15 July to 31 December 2021 using multiple logistic regression analysis, considering exposure details, demographics, and vaccination history. Of 7146 included exposures to confirmed COVID-19 patients, 229 (4.2%) had subsequently tested positive via RT-PCR. Independent risk factors for a positive test were having symptoms (adjusted odds ratio 4.94, 95%CI 3.83−6.39), participating in an unprotected aerosol-generating procedure (aOR 2.87, 1.66−4.96), duration of exposure >15 min (aOR 2.52, 1.82−3.49), personnel who did not wear a mask (aOR 2.49, 1.75−3.54), exposure to aerodigestive secretion (aOR 1.5, 1.03−2.17), index patient not wearing a mask (aOR 1.44, 1.01−2.07), and exposure distance <1 m without eye protection (aOR 1.39, 1.02−1.89). High-potency vaccines and high levels of education protected against infection. A risk model and scoring system with good discrimination power were built. Having symptoms, unprotected exposure, lower education level, and receiving low potency vaccines increased the risk of laboratory-confirmed COVID-19 following healthcare-related exposure events.

2.
PLoS One ; 13(1): e0190132, 2018.
Article in English | MEDLINE | ID: mdl-29298323

ABSTRACT

The global antimicrobial resistance surveillance system (GLASS) was launched by the World Health Organization (WHO) in 2015. GLASS is a surveillance system for clinical specimens that are sent to microbiology laboratory for clinical purposes. The unique feature of GLASS is that clinical data is combined with microbiological data, and deduplication of the microbiological results is performed. The objective of the study was to determine feasibility and benefit of GLASS for surveillance of blood culture specimens. GLASS was implemented at Siriraj Hospital in Bangkok, Thailand using a locally developed web application program (app) to transfer blood culture specimen data, and to enter clinical data of patients with positive blood culture by infection control nurses and physicians via the app installed in their smart phones. The rate of positive blood culture specimens with true infection was 15.2%. Escherichia coli was the most common cause of bacteremia. Secondary bacteremia, primary bacteremia, and central line-associated blood stream infection was observed in 61.8%, 30.6%, and 12.6% of cases, respectively. Sepsis was observed in 56.9% of patients. E.coli was significantly more common in community-acquired bacteremia, whereas Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Acinetobacter baumannii were significantly more common in hospital-acquired bacteremia. Hospital-acquired isolates of E.coli, K.pneumoniae, A.baumannii, P.aeruginosa, S.aureus and Enterococcus faecium were more resistant to antibiotics than community-acquired isolates. In-hospital mortality was significantly higher in patients with antibiotic-resistant bacteremia than in patients with antibiotic non-resistant bacteremia (40.5% vs. 28.5%, p<0.001). The patients with antibiotic-resistant bacteremia consumed more resources than those with antibiotic non-resistant bacteremia. Blood culture results combined with patient clinical data were shown to have more benefit for surveillance of antimicrobial resistance, and to be more applicable for developing local antibiotic treatment guidelines for patients suspected of having bacteremia. However, GLASS consumed more time and more resources than the conventional laboratory-based surveillance system.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Drug Resistance, Bacterial , Population Surveillance , Bacteremia/microbiology , Humans , Internet , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...