Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37428325

ABSTRACT

Particulate matters (PM) and volatile organic compounds (VOCs) are the sources of toxic substances that hurt human health and can cause human carcinogens. An active living wall was applied to reduce PM and VOC contamination, while Sansevieria trifasciata cv. Hahnii, a high-performance plant for VOC removal, was selected to grow on the developing wall and used to treat PM and VOCs. The active living wall operating in a 24 m3 testing chamber showed the ability to remediate more than 90% PM within 12 h. The VOC removal can be approximately 25-80% depending on each compound. In addition, the suitable flow velocity of the living wall was also investigated. The flow rate of 1.7 m3 h-1 in front of the living wall was found as the best inlet flow velocity for the developed active living wall. The suitable condition for PM and VOC removal in the active living wall application on the real side was presented in this study. The result confirmed that the application of an active living wall for PM phytoremediation can be an alternative effective technology.

2.
J Environ Sci (China) ; 94: 161-170, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32563480

ABSTRACT

Phytoremediation is a sustainable remedial approach for removing benzene from environment. Plant associated bacteria could ameliorate the phytotoxic effects of benzene on plant, although the specificity of these interactions is unclear. Here, we used proteomics approach to gain a better understanding of the mechanisms involved in plant-bacteria interactions. Plant associated bacteria was isolated and subsequently inoculated into the sterilized Helianthus annuus, and the uptake rates of benzene by these inoculated plants were evaluated. At the end of the experiment, leaves and roots proteins were analyzed. The results showed inoculated H. annuus with strain EnL3 removed more benzene than other treatments after 96 h. EnL3 was identified as Enterobacter sp. according to 16S rDNA analysis. Based on the comparison of proteins, 62 proteins were significantly up or down regulated in inoculated leaves, while 35 proteins were significantly up or down regulated in inoculated roots. Furthermore, there were 4 and 3 identified proteins presented only in inoculated H. annuus leaves and roots, respectively. These proteins involved in several functions including transcription and translation, photosynthesis, and stress response. The network among anti-oxidant defense system, protein synthesis, and photosynthetic electron transfer are involved in collaboratively activate the benzene uptake and stress tolerance in plant.


Subject(s)
Benzene , Proteomics , Bacteria , Plant Leaves , Plant Proteins , Plant Roots
3.
Ecotoxicol Environ Saf ; 102: 147-51, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24530730

ABSTRACT

Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air.


Subject(s)
Air Pollutants/metabolism , Benzene Derivatives/metabolism , Environmental Restoration and Remediation , Plants/metabolism , Toluene/metabolism , Liliaceae/metabolism , Sansevieria/metabolism , Volatile Organic Compounds/metabolism
4.
Environ Sci Pollut Res Int ; 21(4): 2603-10, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24091527

ABSTRACT

Fifteen plant species-Alternanthera bettzickiana, Drimiopsis botryoides, Aloe vera, Chlorophytum comosum, Aglaonema commutatum, Cordyline fruticosa, Philodendron martianum, Sansevieria hyacinthoides, Aglaonema rotundum, Fittonia albivenis, Muehlenbeckia platyclada, Tradescantia spathacea, Guzmania lingulata, Zamioculcas zamiifolia, and Cyperus alternifolius-were evaluated for the removal efficiency of xylene from contaminated air. Among the test plants, Z. zamiifolia showed the highest xylene removal efficiency. Xylene was toxic to Z. zamiifolia with an LC50 of 3,464 ppm. Higher concentrations of xylene exhibited damage symptoms, including leaf tips turning yellow, holonecrosis, and hydrosis. TEM images showed that a low concentration of xylene vapors caused minor changes in the chloroplast, while a high concentration caused swollen chloroplasts and damage. The effect of photosynthetic types on xylene removal efficiency suggests that a mixture of Z. zamiifolia, S. hyacinthoides, and A. commutatum which represent facultative CAM, CAM, and C3 plants, is the most suitable system for xylene removal. Therefore, for maximum improvement in removing xylene volatile compounds under various conditions, multiple species are needed. The effect of a plant's total leaf area on xylene removal indicates that at lower concentrations of xylene, a small leaf area might be as efficient as a large leaf area.


Subject(s)
Air Pollutants/metabolism , Magnoliopsida/metabolism , Xylenes/metabolism , Air Pollutants/toxicity , Biodegradation, Environmental , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Lethal Dose 50 , Magnoliopsida/drug effects , Magnoliopsida/ultrastructure , Microscopy, Electron, Transmission , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Xylenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...