Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Cell Oncol ; 9(1): 2039038, 2022.
Article in English | MEDLINE | ID: mdl-35402699

ABSTRACT

Inducing immunogenic tumor cell death to stimulate the response to immune checkpoint blockade has not yet been effectively translated into clinical practice. We recently discovered that stressed/injured but still viable tumor cells are critical for T-cell priming and substantially improve responses to systemic anti-PD1/CTLA4. Therapeutic tumor cell injury, rather than complete killing, in the tumor microenvironment may enhance efficacy of immunotherapy in various cancers.

2.
Sci Signal ; 14(705): eabc4764, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34665642

ABSTRACT

Although immune checkpoint blockade (ICB) has strong clinical benefit for treating some tumor types, it fails in others, indicating a need for additional modalities to enhance the ICB effect. Here, we identified one such modality by using DNA damage to create a live, injured tumor cell adjuvant. Using an optimized ex vivo coculture system, we found that treating tumor cells with specific concentrations of etoposide, mitoxantrone, or doxorubicin markedly enhanced dendritic cell­mediated T cell activation. These immune-enhancing effects of DNA damage did not correlate with immunogenic cell death markers or with the extent of apoptosis or necroptosis; instead, these effects were mediated by live injured cells with activation of the DNA-PK, ATR, NF-κB, p38 MAPK, and RIPK1 signaling pathways. In mice, intratumoral injection of ex vivo etoposide­treated tumor cells in combination with systemic ICB (by anti-PD-1 and anti-CTLA4 antibodies) increased the number of intratumoral CD103+ dendritic cells and circulating tumor-antigen­specific CD8+ T cells, decreased tumor growth, and improved survival. These effects were absent in Batf3−/− mice and in mice in which the DNA-damaging drug was injected directly into the tumor, due to DNA damage in the immune cells. The combination treatment induced complete tumor regression in a subset of mice that were then able to reject tumor rechallenge, indicating that the injured cell adjuvant treatment induced durable antitumor immunological memory. These results provide a strategy for enhancing the efficacy of immune checkpoint inhibition in tumor types that do not respond to this treatment modality by itself.


Subject(s)
DNA Damage
3.
Nat Commun ; 11(1): 4124, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807787

ABSTRACT

In response to DNA damage, a synthetic lethal relationship exists between the cell cycle checkpoint kinase MK2 and the tumor suppressor p53. Here, we describe the concept of augmented synthetic lethality (ASL): depletion of a third gene product enhances a pre-existing synthetic lethal combination. We show that loss of the DNA repair protein XPA markedly augments the synthetic lethality between MK2 and p53, enhancing anti-tumor responses alone and in combination with cisplatin chemotherapy. Delivery of siRNA-peptide nanoplexes co-targeting MK2 and XPA to pre-existing p53-deficient tumors in a highly aggressive, immunocompetent mouse model of lung adenocarcinoma improves long-term survival and cisplatin response beyond those of the synthetic lethal p53 mutant/MK2 combination alone. These findings establish a mechanism for co-targeting DNA damage-induced cell cycle checkpoints in combination with repair of cisplatin-DNA lesions in vivo using RNAi nanocarriers, and motivate further exploration of ASL as a generalized strategy to improve cancer treatment.


Subject(s)
Cell Cycle Checkpoints/physiology , DNA Repair/physiology , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , DNA Damage/genetics , DNA Damage/physiology , DNA Repair/genetics , HCT116 Cells , Humans , Immunoblotting , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nanomedicine/methods , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
Front Immunol ; 11: 607891, 2020.
Article in English | MEDLINE | ID: mdl-33708191

ABSTRACT

Chronic inflammation increases the risk for colorectal cancer through a variety of mechanisms involving the tumor microenvironment. MAPK-activated protein kinase 2 (MK2), a major effector of the p38 MAPK stress and DNA damage response signaling pathway, and a critical regulator of pro-inflammatory cytokine production, has been identified as a key contributor to colon tumorigenesis under conditions of chronic inflammation. We have previously described how genetic inactivation of MK2 in an inflammatory model of colon cancer results in delayed tumor progression, decreased tumor angiogenesis, and impaired macrophage differentiation into a pro-tumorigenic M2-like state. The molecular mechanism responsible for the impaired angiogenesis and tumor progression, however, has remained contentious and poorly defined. Here, using RNA expression analysis, assays of angiogenesis factors, genetic models, in vivo macrophage depletion and reconstitution of macrophage MK2 function using adoptive cell transfer, we demonstrate that MK2 activity in macrophages is necessary and sufficient for tumor angiogenesis during inflammation-induced cancer progression. We identify a critical and previously unappreciated role for MK2-dependent regulation of the well-known pro-angiogenesis factor CXCL-12/SDF-1 secreted by tumor associated-macrophages, in addition to MK2-dependent regulation of Serpin-E1/PAI-1 by several cell types within the tumor microenvironment.


Subject(s)
Angiogenic Proteins/metabolism , Colitis-Associated Neoplasms/enzymology , Intracellular Signaling Peptides and Proteins/metabolism , Neovascularization, Pathologic , Protein Serine-Threonine Kinases/metabolism , Tumor-Associated Macrophages/enzymology , Adoptive Transfer , Angiogenic Proteins/genetics , Animals , Cells, Cultured , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/pathology , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Transcription, Genetic , Tumor Microenvironment , Tumor-Associated Macrophages/transplantation
5.
Cancer Res ; 79(10): 2669-2683, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30877108

ABSTRACT

Tyro3, Axl, and Mertk (TAM) represent a family of homologous tyrosine kinase receptors known for their functional role in phosphatidylserine (PS)-dependent clearance of apoptotic cells and also for their immune modulatory functions in the resolution of inflammation. Previous studies in our laboratory have shown that Gas6/PS-mediated activation of TAM receptors on tumor cells leads to subsequent upregulation of PD-L1, defining a putative PS→TAM receptor→PD-L1 inhibitory signaling axis in the cancer microenvironment that may promote tolerance. In this study, we tested combinations of TAM inhibitors and PD-1 mAbs in a syngeneic orthotopic E0771 murine triple-negative breast cancer model, whereby tumor-bearing mice were treated with pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 alone or in combination. Tyro3, Axl, and Mertk were differentially expressed on multiple cell subtypes in the tumor microenvironment. Although monotherapeutic administration of either pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 mAb therapy showed partial antitumor activity, combined treatment of BMS-777607 with anti-PD-1 significantly decreased tumor growth and incidence of lung metastasis. Moreover, combined treatment with BMS-777607 and anti-PD-1 showed increased infiltration of immune stimulatory T cells versus either monotherapy treatment alone. RNA NanoString profiling showed enhanced infiltration of antitumor effector T cells and a skewed immunogenic immune profile. Proinflammatory cytokines increased with combinational treatment. Together, these studies indicate that pan-TAM inhibitor BMS-777607 cooperates with anti-PD-1 in a syngeneic mouse model for triple-negative breast cancer and highlights the clinical potential for this combined therapy. SIGNIFICANCE: These findings show that pan-inhibition of TAM receptors in combination with anti-PD-1 may have clinical value as cancer therapeutics to promote an inflammatory tumor microenvironment and improve host antitumor immunity.


Subject(s)
Aminopyridines/pharmacology , Antibodies, Monoclonal/immunology , Programmed Cell Death 1 Receptor/immunology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridones/pharmacology , Triple Negative Breast Neoplasms/therapy , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Triple Negative Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
6.
J Trauma Acute Care Surg ; 86(1): 101-107, 2019 01.
Article in English | MEDLINE | ID: mdl-30575685

ABSTRACT

BACKGROUND: Both tissue plasminogen activator (tPA) in the circulation and urokinase (uPA) in tissues cleave plasminogen (PLG) to plasmin to promote clot lysis. Tranexamic acid (TXA) blocks both the tPA-dependent generation of plasmin on blood clots as well as active plasmin binding to polymerized fibrin, and is commonly administered for bleeding in trauma to limit fibrinolysis. In addition to lysing clots, however, active plasmin also cleaves complement proteins, potentially enhancing inflammation. Because TXA does not block uPA-dependent plasmin generation from PLG and instead augments it, we hypothesized that administration of TXA could enhance or inhibit proinflammatory C5a formation in a PLG activator-dependent manner. METHODS: Citrate platelet-poor plasma (PPP) and PPP depleted of complement protein C3 or PLG were obtained from healthy donors and commercial sources. Platelet-poor plasma was treated ex vivo with or without TXA and either with or without tPA or with or without uPA. Clotting was then induced by calcium and thrombin in clotted PPP experiments, while unclotted PPP experiments were treated with vehicle controls. C5a levels were measured via enzyme-linked immunosorbent assay. Data were expressed as mean ± SEM. RESULTS: Plasmin-mediated fibrinolysis by tPA in clotted PPP led to an approximately threefold increase in C5a production (p < 0.0001), which was significantly inhibited by TXA (p < 0.001). Paradoxically, when fibrinolysis was induced by uPA, TXA treatment led to further increases in C5a production beyond uPA alone (p < 0.0001). Furthermore, clotting was not required for C5a generation from uPA + TXA. C3 depletion had no effect on C5a production, while depletion of PLG eliminated it. CONCLUSIONS: Tranexamic acid administration can have proinflammatory or anti-inflammatory effects through regulating C5a generation by plasmin, depending on the predominating PLG activator. Tranexamic acid may cause significant inflammatory C5a elevations in injured tissues by augmenting uPA-mediated plasmin generation in a fibrin-independent manner. In contrast, TXA reduces C5a generation during tPA-mediated fibrinolysis that may reduce inflammatory responses. In vivo validation of these novel ex vivo findings is warranted and may have important clinical consequences.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antifibrinolytic Agents/pharmacology , Complement C5a/metabolism , Inflammation Mediators/metabolism , Tranexamic Acid/pharmacology , Adult , Antifibrinolytic Agents/administration & dosage , Blood Coagulation/drug effects , Blood Coagulation/physiology , Complement C5a/drug effects , Female , Fibrinolysin/metabolism , Fibrinolysis/drug effects , Fibrinolysis/physiology , Hemorrhage/drug therapy , Hemorrhage/etiology , Humans , Male , Middle Aged , Plasminogen/drug effects , Plasminogen/metabolism , Signal Transduction/drug effects , Thrombin/metabolism , Tissue Plasminogen Activator/metabolism , Tranexamic Acid/administration & dosage , Urokinase-Type Plasminogen Activator/metabolism , Wounds and Injuries/complications
7.
Proc Natl Acad Sci U S A ; 115(18): E4236-E4244, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666270

ABSTRACT

Chronic inflammation is a major risk factor for colorectal cancer. The p38/MAPKAP Kinase 2 (MK2) kinase axis controls the synthesis of proinflammatory cytokines that mediate both chronic inflammation and tumor progression. Blockade of this pathway has been previously reported to suppress inflammation and to prevent colorectal tumorigenesis in a mouse model of inflammation-driven colorectal cancer, by mechanisms that are still unclear. Here, using whole-animal and tissue-specific MK2 KO mice, we show that MK2 activity in the myeloid compartment promotes tumor progression by supporting tumor neoangiogenesis in vivo. Mechanistically, we demonstrate that MK2 promotes polarization of tumor-associated macrophages into protumorigenic, proangiogenic M2-like macrophages. We further confirmed our results in human cell lines, where MK2 chemical inhibition in macrophages impairs M2 polarization and M2 macrophage-induced angiogenesis. Together, this study provides a molecular and cellular mechanism for the protumorigenic function of MK2.


Subject(s)
Colorectal Neoplasms/blood supply , Colorectal Neoplasms/epidemiology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/enzymology , Neoplasm Proteins/metabolism , Neovascularization, Pathologic/enzymology , Protein Serine-Threonine Kinases/metabolism , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/genetics , Macrophages/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Protein Serine-Threonine Kinases/genetics
8.
Mol Cancer Res ; 15(6): 753-764, 2017 06.
Article in English | MEDLINE | ID: mdl-28184013

ABSTRACT

Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors.Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR.


Subject(s)
B7-H1 Antigen/metabolism , Drug Resistance, Neoplasm/physiology , Phosphatidylserines/metabolism , Proto-Oncogene Proteins c-akt/metabolism , c-Mer Tyrosine Kinase/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Epithelial Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Liposomes , Protein Domains , Protein S/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , c-Mer Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase , Interferon gamma Receptor
9.
Nat Chem Biol ; 12(2): 117-23, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656091

ABSTRACT

Cyclophilin A (CypA) is overexpressed in a number of human cancer types, but the mechanisms by which the protein promotes oncogenic properties of cells are not understood. Here we demonstrate that CypA binds the CrkII adaptor protein and prevents it from switching to the inhibited state. CrkII influences cell motility and invasion by mediating signaling through its SH2 and SH3 domains. CrkII Tyr221 phosphorylation by the Abl or EGFR kinases induces an inhibited state of CrkII by means of an intramolecular SH2-pTyr221 interaction, causing signaling interruption. We show that the CrkII phosphorylation site constitutes a binding site for CypA. Recruitment of CypA sterically restricts the accessibility of Tyr221 to kinases, thereby suppressing CrkII phosphorylation and promoting the active state. Structural, biophysical and in vivo data show that CypA augments CrkII-mediated signaling. A strong stimulation of cell migration is observed in cancer cells wherein both CypA and CrkII are greatly upregulated.


Subject(s)
Cyclophilin A/pharmacology , Oncogene Proteins v-abl/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Signal Transduction/drug effects , Amino Acid Sequence , Blotting, Western , Calorimetry , Cell Line, Tumor , Cell Movement/drug effects , Humans , Molecular Sequence Data
10.
Front Immunol ; 5: 566, 2014.
Article in English | MEDLINE | ID: mdl-25426118

ABSTRACT

The rapid and efficient clearance of apoptotic cells results in the elimination of auto-antigens and provides a strong anti-inflammatory and immunosuppressive signal to prevent autoimmunity. While professional and non-professional phagocytes utilize a wide array of surface receptors to recognize apoptotic cells, the recognition of phosphatidylserine (PS) on apoptotic cells by PS receptors on phagocytes is the emblematic signal for efferocytosis in metazoans. PS-dependent efferocytosis is associated with the production of anti-inflammatory factors such as IL-10 and TGF-ß that function, in part, to maintain tolerance to auto-antigens. In contrast, when apoptotic cells fail to be recognized and processed for degradation, auto-antigens persist, such as self-nucleic acids, which can trigger immune activation leading to autoantibody production and autoimmunity. Despite the fact that genetic mouse models clearly demonstrate that loss of PS receptors can lead to age-dependent auto-immune diseases reminiscent of systemic lupus erythematosus (SLE), the link between PS and defective clearance in chronic inflammation and human autoimmunity is not well delineated. In this perspective, we review emerging questions developing in the field that may be of relevance to SLE and human autoimmunity.

11.
J Cell Biochem ; 115(5): 819-25, 2014 May.
Article in English | MEDLINE | ID: mdl-24356912

ABSTRACT

The Crk adaptor protein, discovered 25 years ago as the transforming gene (v-crk) product encoded by the CT10 avian retrovirus, has made a great impact on the field of signal transduction. By encoding an oncoprotein that contained a viral gag protein fused to only SH2 and SH3 domains, v-Crk demonstrated the significance of SH2 and SH3 domains in oncogenic signaling by their virtue of binding in a sequence-specific context to organize and assemble protein networks. In more recent years, the cellular homologs of Crk (Crk II, Crk I, and CrkL) have been extensively studied, and shown to have critical functions in a wide spectrum of biological and pathological processes that include cell motility, invasion, survival, bacterial pathogenesis, and the efferocytosis of apoptotic cells. Clinically, Crk proteins are implicated in the aggressive behavior of human cancers, including adenocarcinomas of the lung, breast, and stomach, as well as in sarcomas and gliomas. Over-expression of Crk proteins in human cancers has led to a renewed interest in both their signal transduction pathways and mechanisms of up-regulation. This prospect summarizes recent developments in Crk biology, including new structural and biochemical roles for the atypical carboxyl-terminal SH3 (SH3C) domain, revelations regarding the molecular differences between Crk II and Crk L, and the significance of Crk expression in stratified human tumor samples.


Subject(s)
Cell Transformation, Neoplastic/genetics , Neoplasms/metabolism , Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins c-crk/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Phosphorylation , Proto-Oncogene Proteins c-crk/metabolism , Signal Transduction/genetics , src Homology Domains
12.
FEBS Lett ; 586(17): 2615-8, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22710158

ABSTRACT

Since their discovery as cellular counterparts of viral oncogenes more than two decades ago, enormous progress has been made in unraveling the complex regulatory pathways of signal transduction initiated by the Crk family of proteins. New structural and biochemical studies have uncovered novel insights into both negative and positive regulation of Crk mediated by its atypical carboxyl-terminal SH3 domain (SH3C). Moreover, SH3C is tyrosine phosphorylated by receptor tyrosine kinases and non-receptor tyrosine kinases, thereby permitting assemblages of other SH2/PTB domain containing proteins. Such non-canonical signaling by the Crk SH3C reveals new regulatory strategies for adaptor proteins.


Subject(s)
Proto-Oncogene Proteins c-crk/chemistry , src Homology Domains , Animals , Cell Movement , Humans , Models, Biological , Models, Molecular , Molecular Conformation , Peptides/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Signal Transduction , Tyrosine/chemistry
13.
Nat Chem Biol ; 8(6): 590-6, 2012 May 13.
Article in English | MEDLINE | ID: mdl-22581121

ABSTRACT

CrkL is a key signaling protein that mediates the leukemogenic activity of Bcr-Abl. CrkL is thought to adopt a structure that is similar to that of its CrkII homolog. The two proteins share high sequence identity and indistinguishable ligand binding preferences, yet they have distinct physiological roles. Here we show that the structures of CrkL and phosphorylated CrkL are markedly different than the corresponding structures of CrkII. As a result, the binding activities of the Src homology 2 and Src homology 3 domains in the two proteins are regulated in a distinct manner and to a different extent. The different structural architecture of CrkL and CrkII may account for their distinct functional roles. The data show that CrkL forms a constitutive complex with Abl, thus explaining the strong preference of Bcr-Abl for CrkL. The results also highlight how the structural organization of the modular domains in adaptor proteins can control signaling outcome.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Fusion Proteins, bcr-abl/metabolism , Nuclear Proteins/chemistry , Proto-Oncogene Proteins c-crk/chemistry , src Homology Domains , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Fusion Proteins, bcr-abl/genetics , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Proto-Oncogene Proteins c-crk/genetics , Proto-Oncogene Proteins c-crk/metabolism , Signal Transduction
14.
Mol Cell Biol ; 31(2): 287-99, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21078876

ABSTRACT

Human chorionic gonadotropin (hCG) is a glycoprotein hormone essential to pregnancy. hCG is heterodimeric and functionally defined by its ß subunit. hCGß evolved from the ß subunit of luteinizing hormone in two phases. In the first phase, type I genes (hCGß3, -5, -7, and -8) acquired changes affecting gene expression and extending the proteins' C terminus. In the second phase, type II genes (hCGß1 and -2) were formed by the insertion of a DNA element into the type I 5' end. The insertion includes the small noncoding RNA gene snaR-G and has been predicted to drastically change the protein products encoded. We trace the insertion to the common ancestor of the African great apes and show that it contains transcription signals, including snaR-G. Type II transcripts are predominantly expressed in testis. Contrary to predictions, the product of the major mRNA splice form is hCGß. A novel peptide is encoded by alternatively spliced transcripts. These findings support the view that type II genes evolved in African great apes to function in the male reproductive system.


Subject(s)
Chorionic Gonadotropin/genetics , Reproduction , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , Chorionic Gonadotropin/metabolism , Female , HeLa Cells , Hominidae , Humans , Male , Molecular Sequence Data , Multigene Family , Pregnancy , Promoter Regions, Genetic , Protein Isoforms/genetics , Sequence Alignment , Tissue Distribution
15.
Genes Cancer ; 1(11): 1132-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21779437

ABSTRACT

Adaptor proteins are named for their function in assembling complexes of cellular proteins to execute and facilitate transmission of signals. The Crk family of adaptors consists of 2 members, Crk and CrkL. Crk, which was originally isolated as an oncogene, v-Crk, that transforms CEFs, has at least 2 splice variants, CrkI and CrkII, with differing biological activities. All Crk family proteins serve to act as molecular bridges between tyrosine kinases and their substrates and also modulate the specificity and stoichiometry of signaling processes. Signaling via CrkII and CrkL can be negatively regulated via tyrosine phosphorylation-mediated autoinhibition, while such a mechanism is not known to exist for CrkI. Although v-Crk clearly functions as a bona fide oncogene, in recent years, an emerging body of evidence suggests that cellular Crk proteins are overexpressed in human tumors and the expression levels correlate with aggressive and malignant behavior of cancer cells. These properties of Crk proteins make them potential cancer prognosis markers and therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...