Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 360: 127637, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35853590

ABSTRACT

Biotransformation of organic substrates via acidogenic fermentation (AF) to high-value products such as C1-C6 carboxylic acids and alcohol serves as platform chemicals for various industrial applications. However, the AF technology suffers from low product titers due to thermodynamic constraints. Recent studies suggest that augmenting AF redox potential can regulate the metabolic pathway and provide seamless electron flow by lowering the activation energy barrier, thus positively influencing the substrate utilization rate, product yield, and speciation. Hence, the augmented AF system with an exogenous electricity supply is termed as electro-fermentation (EF), which has enormous potential to strengthen the fermentation technology domain. Therefore, this critical review systematically discusses the current understanding of EF with a special focus on the extracellular electron transfer mechanism of electroactive bacteria and provides perspectives and research gaps to further improve the technology for green chemical synthesis, sustainable waste management, and circular bio-economy.


Subject(s)
Electricity , Metabolic Networks and Pathways , Acids , Bacteria , Electron Transport , Fermentation
2.
Bioresour Technol ; 358: 127404, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35654323

ABSTRACT

This study systematically evaluated and compared different inoculum pretreatment methods to quickly select dark fermentative bacteria from anaerobic sludge for the bioconversion of food waste. The hydrogen (H2) production rate was found to be highest for 'heat + CO2' treated inoculum at 140.75 ± 2.61 mL/L/h compared to control experiments (60.27 ± 2.61 mL/L/h). At the same time, H2 yield was found to be highest for alkali-treated inoculum at 157.25 ± 7.62 mL/g of volatile solids (VS) added compared to control experiments (91.61 ± 1.93 mL/g VS). Analysis of organic acids suggests a Clostridial-type fermentation with acetate (0.52 to 1.60 g/L) and butyrate (1.69 to 2.42 g/L) being the major by-products. The microbial data analysis showed that Firmicutes (63.64-90.39%), Bacteroidota (1.16-21.88%), and Proteobacteria (2.09-9.93%) were dominant at the phylum level, whereas genus-level classification showed Clostridium sensu stricto 1 (6.37-42.63%), Streptococcus (1.87-28.96%), Prevotella (0.57-16.59%), and Enterococcus (0.56-14.51%) dominated under different experimental conditions.


Subject(s)
Bioreactors , Refuse Disposal , Clostridium/metabolism , Fermentation , Food , Hydrogen/metabolism , Hydrogen-Ion Concentration , Sewage
3.
Environ Sci Pollut Res Int ; 29(27): 41742-41756, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35098471

ABSTRACT

A novel tubular sediment-water electrolytic fuel cell (SWEFC) was fabricated for the reduction of Cr(VI) in a dual-phase system. The approach simulates a standing water body with Cr(VI)-contaminated overlying water (electrolyte) and bottom sediment phase with electrodes placed in both the phases, supplemented with urea as a potential electron donor. Cr(VI) reduction efficiency of 93.2 ± 1.3% from electrolyte (in 1.5 h) and 81.2 ± 1.3% from the sediment phase (in 8 h) with an initial Cr(VI) concentration of 1,000 mg/L was observed in a single-cell configuration. The effect of initial Cr(VI) concentration, variation in sediment salinity and pH, and different electron donors on the SWEFC performance were systematically investigated. SWEFC showed enhanced performance with 2.4-fold higher current (193.9 mA) at 400 mg/L Cr(VI) concentration when cow dung was used as a low-cost alternative to urea as an electron donor. Furthermore, reactor scalability studies were carried out with nine-anode and nine-cathode configuration (3 L electrolyte and 2 kg sediment), and reduction efficiencies of 98.9 ± 0.9% (in 1 h) and 97.6 ± 2.2% (in 8 h) were observed from the electrolyte and sediment phases, respectively. The proposed sediment-water electrolytic fuel cell can be an advanced and environmentally benign strategy for Cr(VI) remediation from contaminated sediment-water interfaces along with electricity generation.


Subject(s)
Bioelectric Energy Sources , Animals , Cattle , Chromium , Electrolytes , Female , Oxidation-Reduction , Urea , Water
4.
J Environ Manage ; 232: 554-563, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30508775

ABSTRACT

The present study demonstrates the potential utilization of urea/cow urine as anolyte for Cr(VI) reduction via a simple three-chambered electrolytic cell. The inherent chemical energy in the dual-waste stream (Cr(VI)-urea/urine) is employed for its self-oxidation-reduction without the need for any external energy supply. Ni foam as electroactive anode and catalyst-free carbon felt as cathode, along with the appropriate positioning of ion-selective separators, indirectly improved the cell performance by impeding electrolyte crossover. A fundamental study involving five different membrane configurations was conducted herein to improve Cr(VI) reduction efficiency. The Cr(VI) reduction efficiencies were 11.84 ±â€¯0.27%, 10.55 ±â€¯0.17%, 77.24 ±â€¯0.38% at 24 h, 13.57 ±â€¯0.25% at 72 h with glass frit, cation exchange membrane (CEM), sandwiched membrane, and anion exchange membrane (AEM) as separators in a dual-chambered H-cell, respectively, with an initial Cr(VI) concentration of 100 mg/L. The fifth configuration, consisting of a middle chamber between the anode and cathode with the CEM close to the anode and the AEM close to the cathode resulted in a reduction efficiency of 79.98 ±â€¯2.24% within 45 min for an initial Cr(VI) concentration of 400 mg/L. The first order rate constants were determined to be 0.024, 0.018, and 0.013 min-1 for Cr(VI) concentrations of 100, 200, and 400 mg/L, respectively. Moreover, when urea was replaced with cow urine as anolyte, a reduction efficiency of 98.94 ±â€¯1.28% was achieved at pH 2 in 45 min with 400 mg/L as initial Cr(VI) concentration. Furthermore, the XPS spectra of reduced Cr corresponding to binding energies of 579.4 eV and 589.3 eV, respectively, confirmed the presence of low-toxic Cr(III). The effect of applied load, initial Cr(VI) and urea concentration, Cr(VI) reduction under different initial H2SO4 concentrations were succinctly investigated to evaluate the performance of the electrolytic cell. The redox electrolytic cell can thus be an alternative to the conventional chemical or energy intensive processes for the reduction of hexavalent chromium.


Subject(s)
Chromium , Urea , Animals , Cattle , Electrolytes , Female , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...